×

zbMATH — the first resource for mathematics

Analysis of a nonsynchronized sinusoidally driven dynamical system. (English) Zbl 1090.34557

MSC:
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevE.47.3057
[2] DOI: 10.1142/S0218127494000095 · Zbl 0876.58028
[3] DOI: 10.1090/conm/020/718132 · Zbl 0526.58043
[4] DOI: 10.1103/PhysRevE.55.5082
[5] DOI: 10.1103/PhysRevE.49.3784
[6] Cao L., Physica D110(1 & 2) pp 43– (1997)
[7] Crutchfield J. P., Complex Syst. 1 pp 417– (1987)
[8] DOI: 10.1103/PhysRevE.49.5025
[9] Fang H. P., J. Phys. 28 pp 3901– (1995)
[10] DOI: 10.1103/PhysRevLett.59.845
[11] DOI: 10.1103/PhysRevLett.67.2244
[12] DOI: 10.1103/PhysRevE.51.935
[13] DOI: 10.1103/PhysRevE.49.4955
[14] Gouesbet G., Physica 58 pp 202– (1992)
[15] DOI: 10.1088/0305-4470/22/24/011 · Zbl 0722.58016
[16] DOI: 10.1088/0951-7715/7/3/008 · Zbl 0806.58015
[17] DOI: 10.1103/PhysRevE.49.4693
[18] Letellier C., J. Phys. pp 1615– (1996)
[19] DOI: 10.1021/j100018a039
[20] Letellier C., Entropie 202 pp 147– (1997)
[21] Mindlin G. B., Physica 58 pp 229– (1992)
[22] DOI: 10.1007/BF01209064 · Zbl 0797.58057
[23] DOI: 10.1103/PhysRevE.51.164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.