Zelený, Miroslav An example of a \(\mathcal C^{1,1}\) function, which is not a d.c. function. (English) Zbl 1090.46012 Commentat. Math. Univ. Carol. 43, No. 1, 149-154 (2002). Summary: Let \(X = \ell _p\), \(p \in (2,+\infty )\). We construct a function \(f: X \to {\mathbb R}\) which has Lipschitz Fréchet derivative on \(X\) but is not a d.c. function. Cited in 3 Documents MSC: 46B20 Geometry and structure of normed linear spaces 26B25 Convexity of real functions of several variables, generalizations Keywords:Lipschitz Fréchet derivative; d.c. functions PDF BibTeX XML Cite \textit{M. Zelený}, Commentat. Math. Univ. Carol. 43, No. 1, 149--154 (2002; Zbl 1090.46012) Full Text: EuDML EMIS OpenURL