×

zbMATH — the first resource for mathematics

Material symmetry and chirality in nonlinearly elastic rods. (English) Zbl 1090.74610
This article deals with certain classes of symmetry in straight nonlinearly elastic rods in the presence of a uniform helical microstructure. The author imposes some symmetries in the energy functional of a thin elastic rod. Under the symmetries, he expands it to obtain a quadratic energy functional so that he considers distinction between ‘hemitropic’ and isotropic rods. He states that the hemitropic symmetry causes a coupling between extension and twist of the rod. Using the quadratic energy functionals, he investigates dihedral-helical symmetry of rods.

MSC:
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G65 Energy minimization in equilibrium problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antman, S.S., Nonlinear Problems of Elasticity (1995) · Zbl 0820.73002 · doi:10.1007/978-1-4757-4147-6
[2] Costello, G., The Theory of Wire Rope (1997) · doi:10.1007/978-1-4612-1970-5
[3] Calladine, C.R., Understanding DNA (1997)
[4] Elliott, D.H., Biol. Rev. 40 pp 392– (1965) · doi:10.1111/j.1469-185X.1965.tb00808.x
[5] Marco, J.F., Macromolecules 27 pp 981– (1994) · doi:10.1021/ma00082a015
[6] Smith, G.F., Constitutive Equations for Anisotropic and Isotropic Materials (1994)
[7] Love, A.E.H., The Mathematical Theory of Elasticity, 4. ed. (1934)
[8] Hammermesh, M., Group Theory (1962)
[9] Timoshenko, S.P., Vibration Problems in Engineering, 4. ed. (1974) · JFM 63.1305.03
[10] Li, Y., J. Comput. Phys. (2002)
[11] LeBret, M., Biopolymers 18 pp 1709– (1979) · doi:10.1002/bip.1979.360180710
[12] Shi, Y., J. Chem. Phys. 101 pp 5186– (1994) · doi:10.1063/1.468506
[13] Manning, R.S., J. Chem. Phys. 105 pp 5626– (1996) · doi:10.1063/1.472373
[14] Swigon, D., Biophys. J. 74 pp 2515– (1998) · doi:10.1016/S0006-3495(98)77960-3
[15] Strick, T.R., Science 271 pp 1835– (1996) · doi:10.1126/science.271.5257.1835
[16] Kamien, R.D., Europhys. Lett. 38 pp 237– (1997) · doi:10.1209/epl/i1997-00231-y
[17] Marco, J.F., Europhys. Lett. 38 pp 183– (1997) · doi:10.1209/epl/i1997-00223-5
[18] Papadopoulos, C.M., Buckled states of compressed hemitropic rods (2002)
[19] Luo, C., J. Elasticity 60 pp 35– (2000) · Zbl 0976.74036 · doi:10.1023/A:1007624328427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.