×

zbMATH — the first resource for mathematics

Optimality and duality for multiple-objective optimization under generalized type I univexity. (English) Zbl 1090.90173
Summary: We extend the classes of generalized type I vector-valued functions introduced by B. Aghezzaf and M. Hachimi [J. Glob. Optim. 18, No. 1, 91–101 (2000; Zbl 0970.90087)] to generalized univex type I vector-valued functions and consider a multiple-objective optimization problem involving generalized type I univex functions. A number of Kuhn-Tucker type sufficient optimality conditions are obtained for a feasible solution to be an efficient solution. The Mond-Weir and general Mond-Weir type duality results are also presented.

MSC:
90C29 Multi-objective and goal programming
90C46 Optimality conditions and duality in mathematical programming
Citations:
Zbl 0970.90087
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aghezzaf, B.; Hachimi, M., Generalized invexity and duality in multiobjective programming problems, J. global optim., 18, 91-101, (2000) · Zbl 0970.90087
[2] Antczak, T., (\(p, r\))-invex sets and functions, J. math. anal. appl., 263, 355-379, (2001) · Zbl 1051.90018
[3] Antczak, T., On \((p, r)\)-invexity type nonlinear programming problems, J. math. anal. appl., 264, 382-397, (2001) · Zbl 1052.90072
[4] Antczak, T., Multiobjective programming under d-invexity, European J. oper. res., 137, 28-36, (2002) · Zbl 1027.90076
[5] Bector, C.R.; Suneja, S.K.; Gupta, S., Univex functions and univex nonlinear programming, (), 115-124 · Zbl 0802.90092
[6] Brandao, A.J.V.; Rojas-Medar, M.A.; Silva, G.N., Optimality conditions for Pareto nonconvex programming in Banach spaces, J. optim. theory appl., 103, 65-73, (1999) · Zbl 0945.90080
[7] Brandao, A.J.V.; Rojas-Medar, M.A.; Silva, G.N., Invex nonsmooth alternative theorem and applications, Optimization, 48, 239-253, (2000) · Zbl 0960.90082
[8] Chen, X., Optimality and duality for the multiobjective fractional programming with the generalized (\(F, \rho\)) convexity, J. math. anal. appl., 273, 190-205, (2002) · Zbl 1121.90409
[9] Craven, B.D., Invex functions and constrained local minima, Bull. austral. math. soc., 24, 357-366, (1981) · Zbl 0452.90066
[10] Egudo, R.R., Efficiency and generalized convex duality for multiobjective programs, J. math. anal. appl., 138, 84-94, (1989) · Zbl 0686.90039
[11] Hanson, M.A., On sufficiency of the kuhn – tucker conditions, J. math. anal. appl., 80, 545-550, (1981) · Zbl 0463.90080
[12] Hanson, M.A.; Mond, B., Necessary and sufficient conditions in constrained optimization, Math. programming, 37, 51-58, (1987) · Zbl 0622.49005
[13] Hanson, M.A.; Pini, R.; Singh, C., Multiobjective programming under generalized type I invexity, J. math. anal. appl., 261, 562-577, (2001) · Zbl 0983.90057
[14] Jeyakumar, V.; Mond, B., On generalized convex mathematical programming, J. austral. math. soc. ser. B, 34, 43-53, (1992) · Zbl 0773.90061
[15] Kaul, R.N.; Suneja, S.K.; Srivastava, M.K., Optimality criteria and duality in multiple objective optimization involving generalized invexity, J. optim. theory appl., 80, 465-482, (1994) · Zbl 0797.90082
[16] Kim, D.S.; Kim, A.L., Optimality and duality for nondifferentiable multiobjective variational problems, J. math. anal. appl., 274, 255-278, (2002) · Zbl 1035.49026
[17] Kim, D.S.; Lee, W.J., Symmetric duality for multiobjective variational problems with invexity, J. math. anal. appl., 218, 34-48, (1998) · Zbl 0899.90141
[18] Kim, M.H.; Lee, G.M., On duality for nonsmooth Lipschitz optimization problems, J. optim. theory appl., 110, 669-675, (2001) · Zbl 0987.90072
[19] Kim, D.S.; Lee, G.M.; Lee, W.J., Symmetric duality for multiobjective variational problems with pseudo-invexity, (), 106-117 · Zbl 0925.90336
[20] Kuk, H.; Lee, G.M.; Tanino, T., Optimality and duality for nonsmooth multiobjective fractional programming with generalized invexity, J. math. anal. appl., 262, 365-375, (2001) · Zbl 0989.90117
[21] Lai, H.C.; Liu, J.C.; Tanaka, K., Necessary and sufficient conditions for minimax fractional programming, J. math. anal. appl., 230, 311-328, (1999) · Zbl 0916.90251
[22] Maeda, T., Constraint qualification in multiobjective optimization problems: differentiable case, J. optim. theory appl., 80, 483-500, (1994) · Zbl 0797.90083
[23] Mangasarian, O.L., Nonlinear programming, (1969), McGraw-Hill New York · Zbl 0194.20201
[24] Marusciac, I., On fritz John optimality criterion in multiobjective optimization, Anal. numer. theorie approx., 11, 109-114, (1982) · Zbl 0501.90081
[25] S.K. Mishra, V-invex functions and applications to multiobjective programming problems, Ph.D. Thesis, Banaras Hindu University, Varanasi, India, 1995
[26] Mishra, S.K., Generalized proper efficiency and duality for a class of nondifferentiable multiobjective variational problems with v-invexity, J. math. anal. appl., 202, 53-71, (1996) · Zbl 0867.90097
[27] Mishra, S.K., Second order generalized invexity and duality in mathematical programming, Optimization, 42, 51-69, (1997) · Zbl 0914.90239
[28] Mishra, S.K., On multiple-objective optimization with generalized univexity, J. math. anal. appl., 224, 131-148, (1998) · Zbl 0911.90292
[29] Mishra, S.K., Multiobjective second order symmetric duality with cone constraints, European J. oper. res., 126, 675-682, (2000) · Zbl 0971.90103
[30] Mishra, S.K., Second order symmetric duality with F-convexity, European J. oper. res., 127, 507-518, (2000) · Zbl 0982.90063
[31] Mishra, S.K., Pseudoconvex complex minmax programming, Indian J. pure appl. math., 32, 205-213, (2001) · Zbl 0980.90098
[32] Mishra, S.K.; Giorgi, G., Optimality and duality wit generalized semi-univexity, Opsearch, 37, 340-350, (2000) · Zbl 1141.90573
[33] Mishra, S.K.; Mukherjee, R.N., Generalized convex composite multiobjective nonsmooth programming and conditional proper efficiency, Optimization, 34, 53-66, (1995) · Zbl 0855.90115
[34] Mishra, S.K.; Mukherjee, R.N., Generalized continuous nondifferentiable fractional programming problems with invexity, J. math. anal. appl., 195, 191-213, (1995) · Zbl 0846.90108
[35] Mishra, S.K.; Rueda, N.G., Higher-order generalized invexity and duality in mathematical programming, J. math. anal. appl., 247, 173-182, (2000) · Zbl 1056.90136
[36] Mishra, S.K.; Rueda, N.G., Higher-order generalized invexity and duality in nondifferentiable mathematical programming, J. math. anal. appl., 272, 496-506, (2002) · Zbl 1175.90318
[37] Pini, R.; Singh, C., A survey of recent (1985-1995) advances in generalized convexity with applications to duality theory and optimality conditions, Optimization, 39, 311-360, (1997) · Zbl 0872.90074
[38] Rueda, N.G.; Hanson, M.A., Optimality criteria in mathematical programming involving generalized invexity, J. math. anal. appl., 130, 375-385, (1988) · Zbl 0647.90076
[39] Rueda, N.G.; Hanson, M.A.; Singh, C., Optimality and duality with generalized convexity, J. optim. theory appl., 86, 491-500, (1995) · Zbl 0838.90114
[40] Zhian, L.; Qingkai, Y., Duality for a class of multiobjective control problems with generalized invexity, J. math. anal. appl., 256, 446-461, (2001) · Zbl 1016.90043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.