zbMATH — the first resource for mathematics

Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. (English) Zbl 1091.65028
Summary: We present an elegant algorithm for stably and quickly generating the weights of Fejér’s quadrature rules and of the Clenshaw-Curtis rule. The weights for an arbitrary number of nodes are obtained as the discrete Fourier transform of an explicitly defined vector of rational or algebraic numbers. Since these rules have the capability of forming nested families, some of them have gained renewed interest in connection with quadrature over multi-dimensional regions.

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
Full Text: DOI
[1] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 1–123. · Zbl 1118.65388
[2] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd edn., Academic Press, San Diego, 612 pp. · Zbl 1139.65016
[3] S. Elhay and J. Kautsky, Algorithm 655 – IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures, ACM Trans. Math. Softw., 13 (1987), pp. 399–415. · Zbl 0636.65015
[4] L. Fejér, Mechanische Quadraturen mit positiven Cotesschen Zahlen, Math. Z., 37 (1933), pp. 287–309.
[5] W. Gautschi, Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal., 4 (1967), pp. 357–362. · Zbl 0279.65024
[6] W. M. Gentleman, Implementing Clenshaw–Curtis quadrature, Commun. ACM, 15 (1972), pp. 337–346. Algorithm 424 (Fortran code), ibid., pp. 353–355. · Zbl 0234.65024
[7] J. Kautsky and S. Elhay, Calculation of the weights of interpolatory quadratures, Numer. Math., 40 (1982), pp. 407–422. · Zbl 0487.65014
[8] A. S. Kronrod, Nodes and Weights of Quadrature Formulas, Consultants Bureau, New York, 1965. · Zbl 0154.18501
[9] T. N. L. Patterson, The optimum addition of points to quadrature formulae, Math. Comput., 22 (1968), pp. 847–856. Errata, Math. Comput., 23 (1969), p. 892. · Zbl 0172.19304
[10] K. Petras, On the Smolyak cubature error for analytic functions, Adv. Comput. Math., 12 (2000), pp. 71–93. · Zbl 0947.65024
[11] K. Petras, Smolyak cubature of given polynomial degree with few nodes for increasing dimension, Numer. Math., 93 (2003), pp. 729–753. · Zbl 1024.65023
[12] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl., 4 (1963), pp. 240–243. · Zbl 0202.39901
[13] G. von Winckel, Fast Clenshaw–Curtis Quadrature, The Mathworks Central File Exchange, Feb. 2005. URL http://www.mathworks.com/matlabcentral/files/6911/clencurt.m
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.