On the use of aggregation operations in information fusion processes. (English) Zbl 1091.68107

Summary: This position paper discusses the role of the existing body of fuzzy set aggregation operations in various kinds of problems where the process of fusion of items coming from several sources is central. Several kinds of membership functions can be useful according to the nature of the information to be merged: numerical vs. ordinal inputs, preferences vs. uncertain data, observations vs. constraints. In each case, some aggregation operations look more plausible or feasible than others. The aim of this discussion is to suggest directions for putting at work the results of recent mathematical investigations in the structure of aggregation operations.


68T37 Reasoning under uncertainty in the context of artificial intelligence
68P15 Database theory
91B06 Decision theory
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
Full Text: DOI Link


[1] M.A. Abidi, R.C. Gonzalez (Eds.), Data Fusion in Robotics and Machine Intelligence, Academic Press, New York, 1992. · Zbl 0771.68020
[2] Baral, C.; Kraus, S.; Minker, J.; Subrahmanian, V.S., Combining knowledge bases consisting in first order theories, Comput. intell., 8, 1, 45-71, (1992)
[3] Bellman, R.; Zadeh, L.A., Decision making in a fuzzy environment, Management sci., 17, B141-B164, (1970) · Zbl 0224.90032
[4] Benferhat, S.; Dubois, D.; Kaci, S.; Prade, H., Possibilistic merging and distance-based fusion of propositional information, Ann. math. artif. intell., 34, 217-252, (2002) · Zbl 1001.68032
[5] S. Benferhat, D. Dubois, S. Kaci, H. Prade, Bipolar representation and fusion of preferences in the possibilistic logic framework, Proc. Eighth Internat. Conf., Principles of Knowledge Representation and Reasoning (KR2002), Toulouse, France, Morgan Kaufmann Publishers, San Francisco, CA, 2002, pp. 421-432.
[6] Benferhat, S.; Dubois, D.; Prade, H., From semantic to syntactic approaches to information combination in possibilistic logic, (), 141-161 · Zbl 0898.68079
[7] Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie, G., Semiring-based CSPs and valued cspsframeworks, properties, and comparison, Constraints, 4, 199-240, (1999) · Zbl 0946.68143
[8] Bloch, I., Fusion of image information under imprecision and uncertainty: numerical methods, (), 135-168 · Zbl 1002.68814
[9] I. Bloch, A. Hunter (Eds.), Special Issue on Data and Knowledge Fusion, Int. J. Intell. Systems 16 (10 & 11) (2001) 1107-1320. · Zbl 0991.00010
[10] Bouyssou, D.; Marchant, T.; Pirlot, M.; Perny, P.; Tsoukias, A.; Vincke P, P., Evaluation models: A critical perspective, (2000), Kluwer Academic Publisher Boston · Zbl 1107.90366
[11] Calvo, T.; De Baets, B.; Fodor, J., The functional equations of alsina and Frank for uninorms and null-norms, Fuzzy sets and systems, 120, 15-24, (2001)
[12] T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation operators: new trends and applications, Studies in Fuzziness and Soft Computing, Vol. 97, Physica-Verlag, Heidelberg, 2002. · Zbl 0983.00020
[13] Cooke, R.M., Experts in uncertainty, (1991), Oxford University Press Oxford, UK
[14] Cuppens, F.; Cholvy, L.; Saurel, C.; Carrère, J., Merging regulationsanalysis of a practical example, Internat. J. intell. systems, 16, 11, 1223-1244, (2001) · Zbl 0997.68133
[15] Doyle, J.; Thomason, R., Background to qualitative decision theory, The AI magazine, 20, 2, Summer 1999, 55-68, (1999)
[16] D. Dubois, H. Fargier, P. Perny, On the limitations of ordinal approaches to decision-making, Proc. Eighth Internat. Conf., Principles of Knowledge Representation and Reasoning (KR2002), Toulouse, France, Morgan Kaufmann Publishers, San Francisco, CA, 2002, pp. 133-144.
[17] Dubois, D.; Fargier, H.; Prade, H., Possibility theory in constraint satisfaction problemshandling priority, preference and uncertainty, Appl. intell., 6, 287-309, (1996)
[18] Dubois, D.; Fargier, H.; Prade, H., Refinements of the maximin approach to decision-making in fuzzy environment, Fuzzy sets and systems, 81, 103-122, (1996) · Zbl 0877.90002
[19] Dubois, D.; Fodor, J.C.; Prade, H.; Roubens, M., Aggregation of decomposable measures with application to utility theory, Theory and decision, 41, 59-95, (1996) · Zbl 0863.90020
[20] Dubois, D.; Grabisch, M.; Modave, F.; Prade, H., Relating decision under uncertainty and multicriteria decision making models, Internat. J. intell. systems, 15, 10, 967-979, (2000) · Zbl 0969.90050
[21] Dubois, D.; Hajek, P.; Prade, H., Knowledge-driven versus data-driven logics, J. logic language inform., 9, 65-89, (2000) · Zbl 0942.03023
[22] Dubois, D.; Lang, J.; Prade, H., Possibilistic logic, (), 439-513
[23] Dubois, D.; Marichal, J.-L.; Prade, H.; Roubens, M.; Sabbadin, R., The use of the discrete sugeno integral in decision-makinga survey, Internat. J. uncertainty, fuzziness knowledge-based systems, 9, 539-561, (2001) · Zbl 1113.90335
[24] Dubois, D.; Prade, H., Representation and combination of uncertainty with belief functions and possibility measures, Comput. intell., 4, 244-264, (1988)
[25] Dubois, D.; Prade, H., Possibility theory: an approach to the computerized processing of uncertainty, (1988), Plenum Press New York
[26] Dubois, D.; Prade, H., Consonant approximations of belief functions, Internat. J. approx. reason., 4, 5/6, 419-449, (1990) · Zbl 0714.94030
[27] Dubois, D.; Prade, H., When upper probabilities are possibility measures, Fuzzy sets and systems, 49, 65-74, (1992) · Zbl 0754.60003
[28] Dubois, D.; Prade, H., Possibility theory and data fusion in poorly informed environments, Control eng. practice, 2, 5, 811-823, (1994)
[29] Dubois, D.; Prade, H., Possibility theory: qualitative and quantitative aspects, (), 169-226 · Zbl 0924.68182
[30] D. Dubois, H. Prade, Refining aggregation operations in finite ordinal scales, Proc. Second Internat. Conf. in Fuzzy Logic and Technology (EUSFLAT 01), Leicester, UK, 2001, pp. 175-178.
[31] Dubois, D.; Prade, H., Possibility theory in information fusion, (), 53-76 · Zbl 1001.68179
[32] Dubois, D.; Prade, H.; Sabbadin, R., Decision-theoretic foundations of possibility theory, European J. oper. res., 128, 459-478, (2001) · Zbl 0982.90028
[33] D. Dubois, H. Prade, P. Smets, Not impossible vs guaranted possible in fusion and revision, Proc. Sixth European Conf. (ESCQARU 2001), Toulouse, France, Springer, Berlin, 2001, pp. 522-531. · Zbl 1001.68547
[34] Dubois, D.; Prade, H.; Yager, R.R., Merging fuzzy information, (), 335-401 · Zbl 0951.94028
[35] H. Fargier, R. Sabbadin, Qualitative decision under uncertainty: back to expected utility, in: Proc. International Joint Conf. on Artificial Intelligence (IJCAII’03), Acapulco, Mexico, 2003, pp. 303-308. · Zbl 1132.68770
[36] Fodor, J., Smooth associative operations on finite ordinal scales, IEEE trans. fuzzy systems, 8, 791-795, (2000)
[37] Fodor, J.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[38] Fodor, J.; Yager, R.; Rybalov, A., Structure of uninorms, Internat. J. uncertainty, fuzziness and knowledge-based systems, 5, 411-427, (1997) · Zbl 1232.03015
[39] Fung, L.W.; Fu, K.S., An axiomatic approach to rational decision-making in a fuzzy environment, (), 227-256 · Zbl 0366.90003
[40] P.H. Giang, P.P. Shenoy, A comparison of axiomatic approaches to qualitative decision-making using possibility theory, Proc. 17th Internat. Conf. Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 2001, pp. 162-170.
[41] Goguen, J.A., L-fuzzy sets, J. math. anal. appl., 8, 145-174, (1967) · Zbl 0145.24404
[42] Grabisch, M., The application of fuzzy integrals in multicriteria decision-making, European J. oper. res., 89, 445-456, (1996) · Zbl 0916.90164
[43] M. Grabisch, B. De Baets, J. Fodor, On symmetric pseudo-additions and pseudo-multiplications: is it possible to build rings on [−1, +1]? Proc. Nineth Internat. Conf. Information Processing and Management of Uncertainty in Knowledge based Systems (IPMU2002), Annecy, France, 2002, pp. 1349-1355.
[44] M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals, Physica-Verlag, Heidelberg, Germany, 1999.
[45] Grabish, M., The symmetric sugeno integral, Fuzzy sets and systems, 139, 3, 473-490, (2003) · Zbl 1033.28009
[46] Keeney, R.; Raiffa, H., Decision with multiple objectives: preferences and value trade-offs, (1976), Wiley New York
[47] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Academic Publishers Boston · Zbl 0972.03002
[48] S. Konieczny, J. Lang, P. Marquis, Distance-based merging: a general framework and some complexity results, in: Proc. Eighth Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR2002), Toulouse-France, Morgan Kaufmann Publishers, San Francisco, CA, 2002, pp. 97-108.
[49] Gebhardt, J.; Kruse, R., Parallel combination of information sources, (), 393-440 · Zbl 1101.68865
[50] Lewis, D., Counterfactuals, (1973), Basil Blackwell London
[51] Liberatore, P.; Schaerf, M., Arbitration (or how to merge knowledge bases), IEEE trans data and knowledge eng., 10, 76-90, (1998)
[52] Mukaidono, M., On some properties of fuzzy logic, Systems-computers-control, 3, 3, 36-43, (1975)
[53] Pal, N.; Bezdek, J.C., Quantifying different facets of fuzzy uncertainty, () · Zbl 0986.94056
[54] Revesz, P.Z., On the semantics of arbitration, Internat. J. algebra comput., 7, 133-160, (1997) · Zbl 0865.68040
[55] Savage, L.J., The foundations of statistics, (1972), Dover New York · Zbl 0121.13603
[56] Schmeidler, D., Subjective probability and expected utility without additivity, Econometrica, 57, 571-587, (1989) · Zbl 0672.90011
[57] Sen, A.K., Social choice theory, (), 1173-1181, (Chapter 22)
[58] Shackle, G.L.S., Decision order & time in human affairs, (1961), Cambridge University Press Cambridge, UK
[59] Shafer, G., A mathematical theory of evidence, (1976), Princeton University Press Princeton, NJ · Zbl 0359.62002
[60] Silvert, W., Symmetric summationa class of operations on fuzzy sets, IEEE trans. systems, man cybernet., 9, 10, 657-659, (1979) · Zbl 0424.04003
[61] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland Amsterdam · Zbl 0546.60010
[62] L. Ughetto, D. Dubois, H. Prade, Implicative and conjunctive fuzzy rules—A tool for reasoning from knowledge and examples, Proc. 15th US Nat. Conf. in Artificial Intelligence(AAAI-99), Orlando, 1999, pp. 214-219.
[63] Vincke, P., Multicriteria decision-aid, (1992), Wiley New York
[64] Von Neumann, J.; Morgenstern, O., Theory of games and economic behaviour, (1944), Princeton University Press Princeton, NJ
[65] Wald, A., Statistical decision functions, (1950), Wiley New York · Zbl 0040.36402
[66] Weisbrod, J., A new approach to fuzzy reasoning, Soft comput., 2, 89-99, (1998)
[67] Zadeh, L.A., Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606
[68] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3-28, (1978) · Zbl 0377.04002
[69] Zadeh, L.A., A theory of approximate reasoning, (), 149-194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.