×

zbMATH — the first resource for mathematics

Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays. (English) Zbl 1091.70502

MSC:
70K50 Bifurcations and instability for nonlinear problems in mechanics
70K20 Stability for nonlinear problems in mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1023/A:1008328027179 · Zbl 0976.70016 · doi:10.1023/A:1008328027179
[2] DOI: 10.1137/S0036139993248853 · Zbl 0809.34077 · doi:10.1137/S0036139993248853
[3] Beuter A., Bull. Math. Biol. 55 pp 525– (1993)
[4] DOI: 10.1137/S0036139997319797 · Zbl 0920.34013 · doi:10.1137/S0036139997319797
[5] DOI: 10.1016/0025-5564(73)90046-1 · Zbl 0251.92011 · doi:10.1016/0025-5564(73)90046-1
[6] DOI: 10.1115/1.3149688 · Zbl 0581.93028 · doi:10.1115/1.3149688
[7] DOI: 10.1016/0304-4068(84)90009-0 · Zbl 0553.90019 · doi:10.1016/0304-4068(84)90009-0
[8] DOI: 10.1109/72.712187 · doi:10.1109/72.712187
[9] DOI: 10.1109/3468.798076 · doi:10.1109/3468.798076
[10] DOI: 10.1016/S0960-0779(00)00132-6 · Zbl 1012.92005 · doi:10.1016/S0960-0779(00)00132-6
[11] DOI: 10.1016/0025-5564(81)90076-6 · Zbl 0454.92004 · doi:10.1016/0025-5564(81)90076-6
[12] DOI: 10.1103/PhysRevA.39.347 · doi:10.1103/PhysRevA.39.347
[13] DOI: 10.1103/PhysRevA.40.3420 · doi:10.1103/PhysRevA.40.3420
[14] Mizuno M., Physica 36 pp 327– (1989)
[15] Murakaimi K., Neural Parall. Scient. Comput. 7 pp 1– (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.