On the finite volume reformulation of the mixed finite element method for elliptic and parabolic PDE on triangles. (English) Zbl 1091.76520

Summary: A new resolution of parabolic and elliptic partial differential equations (PDEs) based on the mixed finite element approximation on triangles has been recently developed. This new approach reduces the number of unknowns from fluxes or Lagrange multiplier defined on edges to a single unknown per element. In this paper, we analyze this transformation mathematically, and describe in details how to handle singular elements and singular edges. For these singular elements, the standard mixed method on triangles can always be made equivalent to a finite volume formulation, where the finite volumes are obtained by aggregation of finite elements across singular edges. The positive definiteness of the system matrix obtained with the new formulation is analyzed in details. A criterion is given concerning the property of this matrix which show that its conditioning is related to the shape of the triangle and the contrast in parameters from one element to the adjacent ones.
Numerical experiments are performed for elliptic and parabolic PDEs. The comparisons between an iterative solver (PCG) and a direct solver (unifrontal/multifrontal) show that the direct solver is more efficient. Moreover, its performance is not correlated with the system matrix conditioning. It appears that the new formulation requires significantly less CPU time for elliptic PDEs and is competitive for parabolic PDEs. The new formulation remains also accurate enough even in nearly singular situations.


76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI


[1] A. Gupta, Recent advances in direct methods for solving un symmetric sparse systems of linear equations, IBM Research Report, RC 22039 (98933) April 20, 2001
[2] A. Gupta, Improved symbolic and numerical factorization algorithms for unsymmetric sparse matrices, IBM Research Report, RC 22137 (99131) August 1, 2001 · Zbl 1021.65014
[3] T. Arbogast, P.T. Kennan, Mixed finite element methods as finite difference methods for solving elliptic equations on triangular elements, Technical Report 93-53, Department of Computational and Applied Mathematics, Rice University, 1984
[4] Babuska, I.; Oden, J.T.; Lee, J.L., Mixed-hybrid finite element method approximations of second-order elliptic boundary value problems. part I, Comput. methods appl. mech. engrg., 11, 175, (1977) · Zbl 0382.65056
[5] Baranger, J.; Maitre, J.F.; Oudin, F., Application de la théorie des éléments finis mixtes à l’étude d’une classe de schémas aux volumes-différences finis pour LES problèmes elliptiques, Comptes rendus de l’académie des sciences, Paris, 319, Série I, 401-404, (1994) · Zbl 0804.65102
[6] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RARIAO modèl. math. anal. numèr., 8, 129, (1974) · Zbl 0338.90047
[7] Burden, R.L.; Faires, J.D.; Reynolds, A.C., Numerical analysis, (1981), Prindle, Weber & Schmidt Press Boston, MA
[8] Chavent, G.; Roberts, J.E., A unified physical presentation of mixed, mixed hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems, Adv. water resour., 14, 329-348, (1991)
[9] G. Chavent, A. Younes, R. Mosé, Ph. Ackerer, On the finite volume reformulation of the mixed finite elements method on triangles, Rapport de recherche de l’Institut National de Recherche en Informatique et en Automatique, 3769, 1999
[10] C. Cordes, M. Putti, Triangular mixed finite elements versus finite differences and finite volumes in groundwater flow modeling, in: Proc. Computational methods in subsurface flow and transport problems, Cancun, Mexico, Computational Mechanics Publications, 1996, pp. 61-69
[11] Darlow, B.L.; Ewing, R.E.; Wheeler, M.F., Mixed finite elements methods for miscible displacement problems in porous media, SPE 10501, Soc. pet. eng. J., 24, 397-398, (1984)
[12] T.A. Davis, I.S. Duff, A combined Unifrontal/Multifrontal method for unsymmetric sparse matrices, Technical Report, TR-97-016, Computer and Information Science and Engineering Department, University of Florida, 1999 · Zbl 0962.65027
[13] Durlofsky, L.J., Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities, Water resour. res., 30, 965-973, (1994)
[14] Eisenstat, S., Efficient implementation of a class of preconditioned conjugate gradient methods, SIAM J. sci. statist. comput., 2, 1-4, (1981) · Zbl 0474.65020
[15] Ewing, R.E.; Heinemann, R.F., Mixed finite element approximation of phase velocities in compositional reservoir simulation, Comput. methods appl. mech. engrg., 47, 161, (1984) · Zbl 0545.76127
[16] Girault, V.; Raviart, P.A., Finite element methods for navier – stokes equations: theory and algorithms, () · Zbl 0396.65070
[17] Hoteit, H.; Erhel, J.; Mosé, R.; Philippe, B.; Ackerer, P., Numerical reliability for the mixed methods applied to flow problems in porous media, Journal of computational geosciences, 6, 191-194, (2002) · Zbl 1079.76581
[18] Mosé, R.; Siegel, P.; Ackerer, Ph.; Chavent, G., Application of the mixed hybrid finite element approximation in a groundwater flow model: luxury or necessity?, Water resour. res., 30, 3001-3012, (1994)
[19] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Numerical recipes: the art of scientific computing, (1992), Cambridge University Press Cambridge · Zbl 0778.65002
[20] Raviart, P.A.; Thomas, J.M., A mixed finite element method for second order elliptic problems, (), 292-315 · Zbl 0362.65089
[21] Russel, T.F.; Wheeler, M.F., Finite element and finite difference methods for continuous flows in porous media, (), 35
[22] J.M. Thomas, Sur l’Analyse Numérique des Méthodes d’Eléments Finis Hybrides et Mixtes, Thèse de doctorat d’état, Université Pierre et Marie Curie, France, 1977, 311 pp
[23] Weiser, A.; Wheeler, M.F., On convergence of block-centered finite differences for elliptic problems, SIAM J. numer. anal., 25, 351-375, (1988) · Zbl 0644.65062
[24] Younes, A.; Ackerer, Ph.; Mosé, R.; Chavent, G., A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements, J. computat. phys., 149, 148-167, (1999) · Zbl 0923.65064
[25] Younes, A.; Ackerer, Ph.; Mosé, R.; Chavent, G., Une résolution par LES éléments finis mixtes à une inconnue par maille. comptes rendus de l’académie des sciences, Analyse numérique, Série I, 328, 623-626, (1999) · Zbl 0948.76044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.