Frasin, B. A. Partial sums of certain analytic and univalent functions. (English) Zbl 1092.30019 Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21, 135-145 (2005). Summary: We study the ratio of a function of the form \[ f(z) = z + \sum^\infty_{k=2} a_k z^k \] to its sequence of partial sums of the form \(f_n(z) = z + \sum^n_{k=2} a_k z^k\). Also, we will determine sharp lower bounds for \(\text{Re} \{f(z)/f_n(z)\}\), \(\text{Re} \{f_n(z)/f(z)\}\), \(\text{Re}\{f^\prime(z)/f^\prime_n(z)\}\) and \(\text{Re}\{f^\prime_n(z)/f^\prime (z)\}\). Cited in 1 ReviewCited in 4 Documents MSC: 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) Keywords:analytic functions; univalent functions; Hadamard product; partial sums PDF BibTeX XML Cite \textit{B. A. Frasin}, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21, 135--145 (2005; Zbl 1092.30019) Full Text: EMIS EuDML