On a fixed point theorem in Banach algebras with applications. (English) Zbl 1092.47045

Dans cet article, l’auteur, en partant d’un de ses résultats très connus, présente des théorèmes noveaux de point fixe pour deux opérateurs définis sur un algèbre de Banach et leurs applications très utiles dans la démonstration de l’existence des solutions de quelques equations intégrales non-linéaires.


47H10 Fixed-point theorems
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI


[1] Krasnoselskii, M.A., Some problems of nonlinear analysis, Amer. math. soc. trans., 10, 2, 345-409, (1958)
[2] Burton, T.A., A fixed point theorem of Krasnoselskii, Appl. math. lett., 11, 85-88, (1998) · Zbl 1127.47318
[3] Dhage, B.C., On some variants of schauder’s fixed point principle and applications to nonlinear integral equations, J. math. phys. sci., 25, 603-611, (1988) · Zbl 0673.47043
[4] Dhage, B.C., On \(\alpha\)-condensing mappings in Banach algebras, Math. student, 63, 146-152, (1994) · Zbl 0882.47033
[5] Dhage, B.C., Remarks on two fixed point theorems involving the sum and the product of two operators, Comput. math. appl., 46, 1779-1785, (2003) · Zbl 1065.47056
[6] Boyd, B.; Wong, J.S.W., On nonlinear contractions, Proc. amer. math. soc., 20, 456-464, (1969) · Zbl 0175.44903
[7] Smart, D.R., Fixed point theorems, (1980), Cambridge University Press · Zbl 0427.47036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.