Mesloub, Said; Lekrine, Nadia On a nonlocal singular mixed evolution problem. (English) Zbl 1093.35517 Mat. Vesn. 53, No. 3-4, 79-89 (2001). The authors deal with a singular mixed problem for the equation \(u_{t_1t_2}-\frac1x(xu_x)_x=F(x,t_1,t_2)\), \(t_1\in(0,T_1)\), \(t_2\in(0,T_2)\), \(x\in(0,a)\), \(T_1,T_2,a<\infty\). After giving the definition of a strong solution, they prove the existence and uniqueness of such a solution. Weighted \(L^2\) spaces and a priori estimates are used in proving these assertions. Reviewer: Marko Nedeljkov (Novi Sad) Cited in 1 Document MSC: 35L20 Initial-boundary value problems for second-order hyperbolic equations 35B45 A priori estimates in context of PDEs Keywords:singular boundary conditions; mixed problem for hyperbolic equation; strong solution; weighted \(L^2\) spaces PDF BibTeX XML Cite \textit{S. Mesloub} and \textit{N. Lekrine}, Mat. Vesn. 53, No. 3--4, 79--89 (2001; Zbl 1093.35517) Full Text: EuDML OpenURL