Illig, Aude; Truong-Van, Benoît Asymptotic results for spatial ARMA models. (English) Zbl 1093.62083 Commun. Stat., Theory Methods 35, No. 4, 671-688 (2006). Summary: Causal quadrantal-type spatial ARMA\((p, q)\) models with independent and identically distributed innovations are considered. In order to select the orders (\(p, q\)) of these models and estimate their autoregressive parameters, estimators of the autoregressive coefficients, derived from the extended Yule-Walker equations are defined. Consistency and asymptotic normality are obtained for these estimators. Then, spatial ARMA model identification is considered and a simulation study is given. Cited in 4 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62M30 Inference from spatial processes 62F12 Asymptotic properties of parametric estimators Keywords:asymptotic properties; causality; estimation; order selection; spatial autoregressive moving-average models PDF BibTeX XML Cite \textit{A. Illig} and \textit{B. Truong-Van}, Commun. Stat., Theory Methods 35, No. 4, 671--688 (2006; Zbl 1093.62083) Full Text: DOI References: [1] Brockwell P. J., Time Series: Theory and Methods., 2. ed. (1987) · Zbl 0604.62083 [2] DOI: 10.1111/j.1467-9892.1991.tb00077.x · Zbl 0729.62081 · doi:10.1111/j.1467-9892.1991.tb00077.x [3] Choi B., ARMA Model Identification (1992) · Zbl 0754.62071 [4] DOI: 10.1080/03610920008832574 · Zbl 0991.62076 · doi:10.1080/03610920008832574 [5] DOI: 10.1016/0167-7152(94)90052-3 · Zbl 0806.62077 · doi:10.1016/0167-7152(94)90052-3 [6] Guyon X., Random Fields on a Network (1995) · Zbl 0839.60003 [7] DOI: 10.1093/biomet/80.1.242 · Zbl 0769.62065 · doi:10.1093/biomet/80.1.242 [8] Huang D. W., Sci. China Ser. A 35 pp 413– (1992) [9] DOI: 10.1111/j.1467-842X.1992.tb01066.x · Zbl 0776.62074 · doi:10.1111/j.1467-842X.1992.tb01066.x [10] DOI: 10.1080/03610929508831600 · Zbl 0937.62641 · doi:10.1080/03610929508831600 [11] DOI: 10.2307/1426722 · Zbl 0383.62060 · doi:10.2307/1426722 [12] DOI: 10.2307/1426619 · Zbl 0525.62084 · doi:10.2307/1426619 [13] DOI: 10.2307/2287515 · Zbl 0471.62088 · doi:10.2307/2287515 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.