BEC of free bosons on networks. (English) Zbl 1093.82003

In the paper free bosons jumping on an infinite graph (network) is considered. Using a random walk on a graph the condition for Bose-Einstein condensation is given. For bosons moving in an external periodic potential on a periodic lattice the criterion for Bose-Einstein condensation is obtained.


82B10 Quantum equilibrium statistical mechanics (general)
Full Text: DOI arXiv


[1] DOI: 10.1007/978-3-662-02520-8
[2] DOI: 10.1007/978-3-662-03444-6
[3] DOI: 10.1023/B:JOSS.0000041748.02351.07 · Zbl 1097.82002
[4] DOI: 10.1088/0953-4075/37/7/072
[5] DOI: 10.1088/0953-4075/34/23/314
[6] DOI: 10.1209/epl/i2000-00431-5
[7] Burioni R., Europhys. J. B 15 pp 665–
[8] DOI: 10.1088/0305-4470/35/5/308 · Zbl 0993.82007
[9] DOI: 10.1007/BF01645656
[10] Higuchi Y., Nagoya Math. J. 161 pp 127– · Zbl 0985.58011
[11] DOI: 10.1016/0022-1236(87)90103-0 · Zbl 0661.35062
[12] DOI: 10.1007/BF00534179 · Zbl 0494.60067
[13] DOI: 10.1007/BF01646022
[14] Reed M., Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators (1977)
[15] DOI: 10.1007/BF01053795 · Zbl 0893.60094
[16] DOI: 10.1017/CBO9780511470967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.