zbMATH — the first resource for mathematics

Conjugacy classes outside a normal subgroup. (English) Zbl 1094.20013
Let \(N\) be a normal subgroup of a finite group \(G\). U. Riese and M. A. Shahabi [Commun. Algebra 29, No. 2, 695-701 (2001; Zbl 0990.20020)] and M. Shahryari and M. A. Shahabi [J. Algebra 207, No. 1, 326-332 (1998; Zbl 0913.20014)] investigated the structure of \(N\) when \(N\) is the union of a few conjugacy classes of \(G\). In the paper under review the authors investigate the structure of \(G\) when \(G-N\) is a union of a few conjugacy classes of \(G\).

20E45 Conjugacy classes for groups
20D60 Arithmetic and combinatorial problems involving abstract finite groups
Full Text: DOI
[1] Conway J. H., Atlas of Finite Groups (1985)
[2] DOI: 10.1016/0021-8693(65)90027-X · Zbl 0192.11902
[3] DOI: 10.1007/978-3-642-64981-3 · Zbl 0217.07201
[4] DOI: 10.1007/978-3-642-67997-1
[5] Isaacs I. M., Character Theory of Finite Groups (1976) · Zbl 0337.20005
[6] DOI: 10.1006/jabr.1997.7191 · Zbl 0889.20005
[7] DOI: 10.1090/S0002-9939-02-06452-3 · Zbl 1007.20008
[8] DOI: 10.1006/jabr.2000.8426 · Zbl 0965.20004
[9] DOI: 10.1081/AGB-100001534 · Zbl 0990.20020
[10] DOI: 10.1006/jabr.1998.7441 · Zbl 0913.20014
[11] Shi W., J. Southwest China Teachers Coll 9 (3) pp 9– (1984)
[12] DOI: 10.2307/1970648 · Zbl 0184.04605
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.