Global subanalytic solutions of Hamilton–Jacobi type equations. (English) Zbl 1094.35020

In this work, the Dirichlet and Cauchy-Dirichlet problems for Hamilton-Jacobi equations are investigated. The Hamiltonian function is associated to an analytic Lagrangian function and the existence, and in some cases, the uniqueness of a subanalytic viscosity solution is established. These statements are then extended to cases where the Hamiltonian function is stemming from sub-Riemannian geometry, and more generally from an optimal control problem, and is showed how the subanalyticity status of solutions is related to the existence of singular minimizing trajectories of the underlying control problem. The results of this paper give conditions under which the vioscosity solution of some Hamilton-Jacobi equations is subanalytic. These results imply that the cut-locus, which coincides with the analytic singular set of the viscosity solution, is a subanalytic stratified manifold of codimension greater than or equal to one. Note that this singular set is also the set where characteristic curves intersect. This property is very useful in numerical analysis and has already been used. The interest is to get a general framework in which the set where characteristic curves intersect is, in a sense, “small”. Usual methods to derive such a fact rely on a careful analysis of the characteristic curves, that may be very involved. The results of this paper provide systematic sufficient conditions under which this singular set shares these nice properties resulting from subanalyticity.


35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35F20 Nonlinear first-order PDEs
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
32B20 Semi-analytic sets, subanalytic sets, and generalizations
Full Text: DOI Numdam EuDML


[1] Agrachev, A., Compactness for sub-Riemannian length minimizers and subanalyticity, Rend. sem. mat. Torino, 56, (1999) · Zbl 1039.53038
[2] Agrachev, A.; Bonnard, B.; Chyba, M.; Kupka, I., Sub-Riemannian sphere in the martinet flat case, ESAIM control optim. calc. var., 2, 377-448, (1997) · Zbl 0902.53033
[3] Agrachev, A.; Gauthier, J.P., On subanalyticity of carnot – carathéodory distances, Ann. inst. H. Poincaré anal. non linéaire, 18, 3, (2001) · Zbl 1001.93014
[4] Agrachev, A.; Sarychev, A., Sub-Riemannian metrics: minimality of singular geodesics versus subanalyticity, ESAIM control optim. calc. var., 4, 377-403, (1999) · Zbl 0978.53065
[5] Albano, P.; Cannarsa, P., Structural properties of singularities of semiconcave functions, Ann. scuola norm. sup. Pisa cl. sci. (4), 28, 4, 719-740, (1999) · Zbl 0957.26002
[6] Alberti, G.; Ambrosio, L.; Cannarsa, P., On the singularities of convex functions, Manuscripta math., 76, 3-4, 421-435, (1992) · Zbl 0784.49011
[7] F. Alouges, S. Labbé. Z-invariant micromagnetic configurations, Preprint Univ. Paris Sud, Orsay, 2005
[8] Ambrosio, L.; Cannarsa, P.; Soner, H.M., On the propagation of singularities of semi-convex functions, Ann. scuola norm. sup. Pisa cl. sci. (4), 20, 4, 597-616, (1993) · Zbl 0874.49041
[9] Bardi, M.; Capuzzo-Dolcetta, I., Optimal control and viscosity solutions of hamilton – jacobi – bellman equations, (1997), Birkhäuser Boston · Zbl 0890.49011
[10] Barles, G., Solutions de viscosité des équations de hamilton – jacobi, Math. appl., vol. 17, (1994), Springer-Verlag · Zbl 0819.35002
[11] Bellaïche, A., Tangent space in sub-Riemannian geometry, () · Zbl 0862.53031
[12] Bonnard, B.; Chyba, M., Singular trajectories and their role in control theory, Math. appl., 40, (2003) · Zbl 1022.93003
[13] Bonnard, B.; Trélat, E., On the role of singular minimizers in sub-Riemannian geometry, Ann. fac. sci. Toulouse (6), X, 3, 405-491, (2001) · Zbl 1017.53034
[14] Cannarsa, P.; Mennucci, A.; Sinestrari, C., Regularity results for solutions of a class of hamilton – jacobi equations, Arch. rational mech. anal., 40, 197-223, (1997) · Zbl 0901.70013
[15] Cannarsa, P.; Sinestrari, C., Convexity properties of the minimum time function, Calc. var. partial differential equations, 3, 273-298, (1995) · Zbl 0836.49013
[16] Cannarsa, P.; Sinestrari, C., Semiconcave functions, hamilton – jacobi equations, and optimal control, Progr. nonlinear differential equations appl., vol. 58, (2004), Birkhäuser Boston · Zbl 1095.49003
[17] Cannarsa, P.; Soner, H.M., On the singularities of the viscosity solutions to hamilton – jacobi – bellman equations, Indiana univ. math. J., 36, 3, 501-524, (1987)
[18] Chitour, Y.; Jean, F.; Trélat, E., Propriétés génériques des trajectoires singulières, C. R. acad. sci. Paris, ser. I, 337, 1, 49-52, (2003) · Zbl 1038.58019
[19] Y. Chitour, F. Jean, E. Trélat. Genericity properties for singular trajectories, J. Differential Geom. (2005), in press
[20] Crandall, M.G.; Lions, P.-L., Viscosity solutions of hamilton – jacobi equations, Trans. amer. math. soc., 277, 1-42, (1983) · Zbl 0599.35024
[21] Evans, L.C., Partial differential equations, (1998), Amer. Math. Soc.
[22] Fathi, A., Weak KAM theorem and Lagrangian dynamics, (2003), Cambridge University Press
[23] Hardt, R.M., Stratification of real analytic mappings and images, Invent. math., 28, (1975) · Zbl 0298.32003
[24] Hironaka, H., Subanalytic sets, () · Zbl 0297.32008
[25] Ishii, H., On representation of solutions of hamilton – jacobi equations with convex Hamiltonians, (), 15-22
[26] Jurdjevic, V., Geometric control theory, (1997), Cambridge University Press · Zbl 0940.93005
[27] Lions, P.-L., Generalized solutions of hamilton – jacobi equations, (1982), Pitman
[28] Pontryagin, L.S.; Boltyanskij, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F., The mathematical theory of optimal processes, (1962), Interscience Publishers, John Wiley & Sons New York · Zbl 0102.32001
[29] F. Rampazzo, Faithful representations for convex Hamilton-Jacobi equations, Preprint, Univ. di Padova · Zbl 1130.49003
[30] Rifford, L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. control optim., 41, 3, 659-681, (2002) · Zbl 1034.93053
[31] Rifford, L., Singularities of viscosity solutions and the stabilization problem in the plane, Indiana univ. math. J., 52, 5, 1373-1396, (2003) · Zbl 1119.93058
[32] Tamm, M., Subanalytic sets in the calculus of variations, Acta math., 146, (1981) · Zbl 0478.58010
[33] Trélat, E., Some properties of the value function and its level sets for affine control systems with quadratic cost, J. dynam. control systems, 6, 4, 511-541, (2000) · Zbl 0964.49021
[34] E. Trélat, Etude asymptotique et transcendance de la fonction valeur en contrôle optimal; catégorie log-exp en géométrie sous-Riemannienne dans le cas Martinet, Thèse, Univ. de Bourgogne, 2000
[35] Trélat, E., Solutions sous-analytiques globales de certaines équations d’hamilton – jacobi, C. R. acad. sci. Paris, ser. I, 337, 10, 653-656, (2003) · Zbl 1032.35056
[36] van den Dries, L.; Miller, C., Geometric categories and o-minimal structures, Duke math. J., 84, 2, (1996) · Zbl 0889.03025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.