Effects of SH waves in a functionally graded plate. (English) Zbl 1094.74584

Summary: A computational method is presented to investigate SH waves in functionally graded material (FGM) plates. The FGM plate is first divided into quadratic layer elements (QLEs), in which the material properties are assumed as a quadratic function in the thickness direction. A general solution for the equation of motion governing the QLE has been derived. The general solution is then used together with the boundary and continuity conditions to obtain the displacement and stress in the wave number domain for an arbitrary FGM plate. The displacements and stresses in the frequency domain and time domain are obtained using inverse Fourier integration. Furthermore, a simple integral technique is also proposed for evaluating modified Bessel functions with complex valued order. Numerical examples are presented to demonstrate this numerical technique for SH waves propagating in FGM plates.


74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74S25 Spectral and related methods applied to problems in solid mechanics
Full Text: DOI