×

zbMATH — the first resource for mathematics

A numerical model for the flooding and drying of irregular domains. (English) Zbl 1094.76538
Summary: A numerical technique for the modelling of shallow water flow in one and two dimensions is presented in this work along with the results obtained in different applications involving unsteady flows in complex geometries. A cell-centred finite volume method based on Roe’s approximate Riemann solver across the edges of both structured and unstructured cells is presented. The discretization of the bed slope source terms is done following an upwind approach. In some applications a problem arises when the flow propagates over adverse dry bed slopes, so a special procedure has been introduced to model the advancing front. It is shown that this modification reproduces exactly steady state of still water in configurations with strong variations in bed slope and contour. The applications presented are mainly related with unsteady flow problems. The scheme is capable of handling complex flow domains as will be shown in the simulations corresponding to the test cases that are going to be presented. Comparisons of experimental and numerical results are shown for some of the tests.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
Software:
HE-E1GODF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bermúdez, Upwind methods for hyperbolic conservation laws with source terms, Computers and Fluids 8 pp 1049– (1994) · Zbl 0816.76052 · doi:10.1016/0045-7930(94)90004-3
[2] Bermúdez, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Computer Methods in Applied Mechanical Engineering 155 pp 49– (1998) · Zbl 0961.76047 · doi:10.1016/S0045-7825(97)85625-3
[3] Abbott, Computational Hydraulics (1992)
[4] Cunge, Practical Aspects of Computational River Hydraulics (1980)
[5] Hirsch, Numerical Computation of Internal and External Flows 2 (1990) · Zbl 0742.76001
[6] MacCormack, Proceedings of the Second International Conference on Nonlinear Methods in Fluid Dynamics pp 151– (1971) · doi:10.1007/3-540-05407-3_24
[7] Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics 43 (2) pp 357– (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[8] Roe, Numerical Methods in Fluid Dynamics II (1986)
[9] Alcrudo, Flux difference splitting for 1D open channel flow equations, International Journal for Numerical Methods in Fluids 14. (1992) · Zbl 0825.76539 · doi:10.1002/fld.1650140902
[10] Glaister, Approximate Riemann solutions of the shallow water equations, Journal of Hydraulic Research 26 (3) pp 293– (1988) · Zbl 0707.76068 · doi:10.1080/00221688809499213
[11] García-Navarro, Dam-break flow simulation: some results for one-dimensional models of real cases, Journal of Hydrology 216 pp 227– (1999) · doi:10.1016/S0022-1694(99)00007-4
[12] Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, Journal of Computational Physics 148 pp 497– (1999) · Zbl 0931.76055 · doi:10.1006/jcph.1998.6127
[13] Chow, Open Channel Hydraulics (1959)
[14] García-Navarro, On numerical treatment of the source terms in the shallow water equations, Computers and Fluids 29 pp 951– (2000) · Zbl 0986.76051 · doi:10.1016/S0045-7930(99)00038-9
[15] Hubbard, Flux difference splitting and the balancing of source terms and flux gradients, Journal of Computational Physics 165 pp 89– (2000) · Zbl 0972.65056 · doi:10.1006/jcph.2000.6603
[16] LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, Journal of Computational Physics 146 (1) pp 346– (1998) · Zbl 0931.76059 · doi:10.1006/jcph.1998.6058
[17] Brufau, Two-dimensional dam break flow simulation, International Journal for Numerical Methods in Fluids 33 pp 35– (2000) · Zbl 0974.76535 · doi:10.1002/(SICI)1097-0363(20000515)33:1<35::AID-FLD999>3.0.CO;2-D
[18] Vreugdenhil, Numerical Methods for Shallow-Water Flow (1994) · Zbl 0829.47021 · doi:10.1007/978-94-015-8354-1
[19] Stoker, Water Waves (1957)
[20] Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (1997) · Zbl 0888.76001 · doi:10.1007/978-3-662-03490-3
[21] Heniche, A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries, Advances in Water Research 23 pp 359– (2000) · doi:10.1016/S0309-1708(99)00031-7
[22] Kawahara, Finite element method for moving boundary problems in river flow, International Journal for Numerical Methods in Fluids 6 pp 365– (1986) · Zbl 0597.76014 · doi:10.1002/fld.1650060605
[23] Khan, Modelling flow over an initially dry bed, Journal of Hydraulics Research 38 (5) pp 383– (2000) · doi:10.1080/00221680009498319
[24] Bento Franco A Modelacao computacional e experimental de escoamentos provocados por roturas de barragens 1996
[25] Sleigh PA Berzins M Gaskell PH Wright NG An unstructured finite volume algorithm for predicting flow in rivers and estuaries 1997 · Zbl 0964.76051
[26] Brufau P Simulación bidimensional de flujos hidrodinámicos transitorios en geometrías irregulares 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.