×

Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. (English) Zbl 1095.47049

In this very interesting paper, the authors prove that the strong convergence theorem of the method for nonexpansive mappings can be extended to convergence theorems of the method for the variational inequality problem over the fixed point set of a quasi-nonexpansive mapping. The main results can be regarded as generalizations of the convergence theorems of the method for nonexpansive mappings (cf. among others, the results of F. Deutsch and I. Yamada [Numer. Funct. Anal. Optimization 19, No. 1–2, 33–56 (1998; Zbl 0913.47048)]).

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
90C25 Convex programming
90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
49J40 Variational inequalities

Citations:

Zbl 0913.47048
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/BF03007664 · Zbl 0352.47023
[2] Baillon J.-B., Houston J. Math. 4 pp 1– (1978)
[3] Barbu V., 3rd ed., in: Convexity and Optimization in Banach Spaces (1986) · Zbl 0594.49001
[4] DOI: 10.1006/jmaa.1996.0308 · Zbl 0956.47024
[5] DOI: 10.1137/S0036144593251710 · Zbl 0865.47039
[6] DOI: 10.1287/moor.26.2.248.10558 · Zbl 1082.65058
[7] Bauschke H. H., Contemp. Math. 204 pp 1– (1997)
[8] DOI: 10.1887/0750304359
[9] Borwein J. M., J. Convex Anal. 1 pp 61– (1994)
[10] Bruck R. E., Houston J. Math. 3 pp 459– (1977)
[11] DOI: 10.1088/0266-5611/20/1/006 · Zbl 1051.65067
[12] Censor Y., Math. Programming 81 pp 373– (1998)
[13] Combettes P. L., C.R. Acad. Sci.Paris Sèr. I Math. 320 pp 1385– (1995)
[14] DOI: 10.1109/83.563316
[15] DOI: 10.1109/TSP.2003.812846 · Zbl 1369.94121
[16] DOI: 10.1109/TIP.2004.832922 · Zbl 05452844
[17] DOI: 10.1080/01630569808816813 · Zbl 0913.47048
[18] Dolidze Z. O., Ekonomika i Matem. Metody 18 pp 925– (1982)
[19] Dunford N., Wiley Classics Library Ed., in: Linear Operators Part I: General Theory (1988)
[20] DOI: 10.1016/0022-247X(76)90152-9 · Zbl 0321.49025
[21] DOI: 10.1080/01630569208816489 · Zbl 0769.65026
[22] Ekeland I., Classics in Applied Mathematics 28, in: Convex Analysis and Variational Problems (1999) · Zbl 0939.49002
[23] Goebel K., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984)
[24] DOI: 10.1017/CBO9780511526152
[25] DOI: 10.1090/S0002-9904-1964-11178-2 · Zbl 0142.17101
[26] Golshtein E. G., Modified Lagrangians Monotone Maps in Optimization (1996) · Zbl 0848.49001
[27] Groetsch C. W., Inverse Problems in Mathematical Sciences (1993) · Zbl 0779.45001
[28] DOI: 10.1090/S0002-9904-1967-11864-0 · Zbl 0177.19101
[29] Hiriart J.-B., Convex Analysis and Minimization Algorithms (1993)
[30] DOI: 10.1016/0024-3795(93)00089-I · Zbl 0821.65037
[31] DOI: 10.1016/0041-5553(66)90114-5
[32] Lions P. L., C. R. Acad. Sci. Paris Sèrie A-B 284 pp 1357– (1977)
[33] DOI: 10.1023/A:1008643727926 · Zbl 0924.49009
[34] Luenberger D. G., Optimization by Vector Space Methods (1968) · Zbl 0184.44502
[35] DOI: 10.1081/NFA-120003674 · Zbl 1178.90346
[36] DOI: 10.1081/NFA-120020250 · Zbl 1034.47043
[37] Ogura N., IEICE Trans. Fundamentals 87 pp 872– (2004)
[38] DOI: 10.1090/S0002-9904-1967-11761-0 · Zbl 0179.19902
[39] Reich S., Contemp. Math. 21 pp 179– (1983) · Zbl 0531.47048
[40] DOI: 10.1109/78.709518 · Zbl 0978.93085
[41] DOI: 10.1016/S0165-1684(03)00002-1 · Zbl 1144.65303
[42] Stark H., Vector Space Projections – A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics (1998) · Zbl 0903.65001
[43] Takahashi W., Nonlinear Functional Analysis–Fixed Point Theory and its Applications (2000) · Zbl 0997.47002
[44] Vasin V. V., Ill-posed Problems in Natural Sciences pp 214– (1992)
[45] Vasin, V. V. 2004. A comments on Theorem 2.9 (Chapter 2) in Vasin and Ageev (1995). Personal Communication, Feb. 2004
[46] Vasin V. V., Ill-Posed Problems with a Priori Information (1995) · Zbl 0840.65048
[47] DOI: 10.1007/BF01190119 · Zbl 0797.47036
[48] DOI: 10.1023/B:JOTA.0000005048.79379.b6 · Zbl 1045.49018
[49] Yamada I., In: Proceedings of the IEEE ISCAS’99 (1999)
[50] Yamada I., J. IEICE 83 pp 616– (2000)
[51] Yamada I., Inherently Parallel Algorithm for Feasibility and Optimization and Their Applications pp 473– (2001)
[52] Yamada I., J. IEICE 86 pp 654– (2003)
[53] Yamada I., The Third International Conference on Nonlinear Analysis and Convex Analysis (2003)
[54] Yamada I., In: Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers (2003)
[55] Yamada I., Two Generalizations of the Projected Gradient Method for Convexly Constrained Inverse Problems–Hybrid Steepest Descent Method, Adaptive Projected Subgradient Method, Numerical Analysis and New Information Technology’03 (NANIT’03) (2004)
[56] Yamada I., In: Victoria International Conference 2004 (2004)
[57] DOI: 10.1081/NFA-200045806 · Zbl 1156.90428
[58] Yamada I., Tech. Rep. IEICE 96 pp 63– (1996)
[59] DOI: 10.1080/01630569808816822 · Zbl 0911.47051
[60] DOI: 10.1109/78.995065
[61] Yamada I., Contemporary Mathematics 313, in: Inverse Problems, Image Analysis, and Medical Imaging pp 269– (2002)
[62] Yosida K., 4th ed., in: Functional Analysis (1974)
[63] DOI: 10.1109/TCS.1978.1084541 · Zbl 0392.93032
[64] DOI: 10.1109/TMI.1982.4307555
[65] Zarantonello H., Contributions to Nonlinear Functional Analysis (1971) · Zbl 0263.00001
[66] Zeidler E., Nonlinear Functional Analysis and its Applications, III-Variational Methods and Optimization (1985) · Zbl 0583.47051
[67] Zeidler E., Nonlinear Functional Analysis and its Applications, II/B-Nonlinear Monotone Operators (1990) · Zbl 0684.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.