×

Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations. (English) Zbl 1096.37026


MSC:

37G05 Normal forms for dynamical systems
34C23 Bifurcation theory for ordinary differential equations
37G10 Bifurcations of singular points in dynamical systems
37M20 Computational methods for bifurcation problems in dynamical systems
37G40 Dynamical aspects of symmetries, equivariant bifurcation theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/BF02969413 · Zbl 1050.34052
[2] DOI: 10.1007/978-1-4684-0147-9
[3] DOI: 10.1016/0022-0396(92)90022-F · Zbl 0761.34027
[4] Bazykin A. D., Mathematical Biophysics of Interacting Populations (1985) · Zbl 0605.92015
[5] Bazykin A. D., Bifurcation diagrams of planar dynamical systems (1985) · Zbl 0605.92015
[6] Bazykin A. D., Portraits of Bifurcations: Bifurcation Diagrams of Dynamical Systems on the Plane (1989) · Zbl 0714.58038
[7] F. S. Berezovskaya and A. I. Khibnik, Methods of Qualitative Theory of Differential Equations (Gorkii State University, Gorkii, 1985) pp. 128–138.
[8] DOI: 10.1016/S1874-575X(02)80025-X
[9] DOI: 10.1007/BF01075453 · Zbl 0447.58009
[10] R. I. Bogdanov, Proc. Petrovskii Seminar 2 (Moscow State University, Moscow, 1976) pp. 23–35.
[11] R. I. Bogdanov, Proc. Petrovskii Seminar 2 (Moscow State University, Moscow, 1976) pp. 37–65.
[12] R. I. Bogdanov, Proc. Petrovskii Seminar 5 (Moscow State University, Moscow, 1979) pp. 51–84.
[13] DOI: 10.1007/978-1-4612-5929-9
[14] DOI: 10.1142/S0218127402005741 · Zbl 1043.37041
[15] DOI: 10.1137/0143052 · Zbl 0534.35004
[16] Dumortier F., Erg. Th. Dyn. Syst. 7 pp 375–
[17] Dumortier F., Lecture Notes in Mathematics 1480, in: Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals (1991)
[18] DOI: 10.1016/0167-2789(93)90284-8 · Zbl 0809.58040
[19] DOI: 10.1007/978-3-0348-7004-7_14
[20] DOI: 10.1007/978-1-4612-1208-9_7
[21] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001
[22] DOI: 10.1016/0375-9601(86)90464-0
[23] DOI: 10.1137/S0036142998335005 · Zbl 0931.34024
[24] DOI: 10.1007/978-1-4757-3978-7
[25] DOI: 10.4153/CJM-1990-011-2 · Zbl 0714.58039
[26] Medved M., Czechoslovak Math. J. 40 pp 295–
[27] DOI: 10.1016/S0167-2789(97)00305-9 · Zbl 0973.78027
[28] DOI: 10.1007/978-3-0348-7004-7_39
[29] Sadovskiń≠ A. P., Diff. Eqs. 21 pp 1019–
[30] DOI: 10.1142/9789812798596
[31] DOI: 10.1142/9789812798558
[32] DOI: 10.1016/S0007-4497(02)01127-2 · Zbl 1027.34099
[33] DOI: 10.1006/jdeq.2001.4043 · Zbl 1005.34034
[34] DOI: 10.1016/S0022-0396(03)00137-2 · Zbl 1039.34033
[35] Takens F., Comm. Math. Inst., Rijkuniversiteit Utrecht 2 pp 1–
[36] DOI: 10.1007/BF03167860 · Zbl 0578.58029
[37] DOI: 10.1016/S0747-7171(03)00021-X · Zbl 1021.37033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.