×

zbMATH — the first resource for mathematics

Single-phase flow in composite poroelastic media. (English) Zbl 1097.35067
Summary: The mathematical formulation and analysis of the Barenblatt-Biot model of elastic deformation and laminar flow in a heterogeneous porous medium is discussed. This describes consolidation processes in a fluid-saturated double-diffusion model of fractured rock. The model includes various degenerate cases, such as incompressible constituents or totally fissured components, and it is extended to include boundary conditions arising from partially exposed pores. The quasi-static initial-boundary problem is shown to have a unique weak solution, and this solution is strong when the data are smoother.

MSC:
35K45 Initial value problems for second-order parabolic systems
35K65 Degenerate parabolic equations
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Erdbaumechanic auf Bodenphysikalischer Grundlage Franz Deuticke: Leipzig, 1925.
[2] Theoretical Soil Mechanics. Wiley: New York, 1943. · doi:10.1002/9780470172766
[3] Biot, Journal of Applied Physics 12 pp 155– (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[4] Barenblatt, Prikladnye Matematika Mekhanika 24 pp 852– (1960)
[5] Berryman, Journal of Geophysical Research 100 pp 24611– (1995) · doi:10.1029/95JB02161
[6] Dynamics of Fluids in Porous media. Elsevier: New York, 1972. · Zbl 1191.76001
[7] Flow of fluid through porous materials. Research & Engineering Consultants, Inc.: Englewood, CO, 1961.
[8] Fundametals of Numerical Reservoir Simulation. Elsevier Scientific Publishing Company: Amsterdam, Oxford, New York, 1977.
[9] Computational Methods in Subsurface Flow. Academic Press: New York, 1983. · Zbl 0577.76001
[10] (ed.). Homogenization and Porous Media, Interdisciplinary Applied Mathematics Series, vol. 6. Springer: New York, 1996.
[11] Biot, Journal of Acoustic Society of America 28 pp 168– (1956) · doi:10.1121/1.1908239
[12] Biot, Applied Physics 27 pp 459– (1956) · doi:10.1063/1.1722402
[13] Biot, Journal of Applied Physics 33 pp 1482– (1962) · Zbl 0104.21401 · doi:10.1063/1.1728759
[14] Biot, Indiana University Mathematics Journal 21 pp 597– (1972) · doi:10.1512/iumj.1972.21.21048
[15] Dafermos, Archieve for Rational Mechanics and Analysis 29 pp 241– (1968) · Zbl 0183.37701 · doi:10.1007/BF00276727
[16] Linear thermoelasticity. In Handbuch der Physik, Vol. VIa/2, (ed). Springer: New York, 1972.
[17] (ed.). Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Applied Mathematics and Mechanics Series. North-Holland: Amsterdam, 1979.
[18] Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid. Archiwum Mechaniki Stosowanej 1974; 903-920. · Zbl 0297.35015
[19] Biot, Journal of Applied Physics 26 pp 182– (1955) · Zbl 0067.23603 · doi:10.1063/1.1721956
[20] Rice, Reviews of Geophysics and Space Physics 14 pp 227– (1976) · doi:10.1029/RG014i002p00227
[21] Zienkiewicz, Geotechnique 30 pp 385– (1980) · doi:10.1680/geot.1980.30.4.385
[22] Auriault, Journal de Mécanique 16 pp 575– (1977)
[23] Lévy, International Journal of Engineering Science 17 pp 1005– (1979) · Zbl 0409.76078 · doi:10.1016/0020-7225(79)90022-3
[24] Sanchez-Hubert, Mathematical Methods Applied Science 2 pp 1– (1980) · Zbl 0427.73025 · doi:10.1002/mma.1670020102
[25] Zenisek, Aplikace Matematiky 29 pp 194– (1984)
[26] Showalter, Journal of Mathematical Analysis and Applications 251 pp 310– (2000) · Zbl 0979.74018 · doi:10.1006/jmaa.2000.7048
[27] Showalter, Discrete and Continuous Dynamical Systems · Zbl 0501.35079
[28] Warren, Society of Petroteum Engineering Journal 3 pp 245– (1963) · doi:10.2118/426-PA
[29] Modeling flow and contaminant transport in fractured rocks. In Flow and Contaminant Transport in Fractured Rock, (eds). Academic Press: New York, 1993.
[30] Hilbert Space Methods for Partial Differential Equations. Pitman: London, 1977, and Electronic Monographs in Differential Equations, http://ejde.math.swt.edu//mono-toc.html.
[31] Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs; vol. 49. American Mathematical Society Providence, RI 1997.
[32] Beskos, International Journal of Engineering Science 20 pp 1079– (1982)
[33] Beskos, International Journal of Engineering Science 24 pp 1697– (1986) · Zbl 0601.73109 · doi:10.1016/0020-7225(86)90076-5
[34] Wilson, International Journal Engineering Science 20 pp 1009– (1982) · Zbl 0493.76094 · doi:10.1016/0020-7225(82)90036-2
[35] Bai, Water Resources Research 29 pp 1621– (1993) · doi:10.1029/92WR02746
[36] Lewallen, International Journal of Solids and Structures 35 pp 4845– (1998) · Zbl 0973.74598 · doi:10.1016/S0020-7683(98)00097-3
[37] Valliappan, International Journal for Numerical Methods in Engineering 29 pp 1079– (1990) · Zbl 0704.73082 · doi:10.1002/nme.1620290512
[38] Inequalities in Mechanics and Physics. Springer: Berlin, 1976. · doi:10.1007/978-3-642-66165-5
[39] Mathematical Elasticity, vol. I, Three-Dimensional Elasticity. North-Holland: Amsterdam, 1988.
[40] Existence theorems in elasticity. In Handbuch der Physik, vol. VIa/2, (ed). Springer: New York, 1972.
[41] Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer: New York, 1983.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.