×

Asymptotic entanglement of two independent systems in a common bath. (English) Zbl 1097.81010

Summary: Two non-interacting systems immersed in a common bath and evolving with a Markovian, completely positive dynamics can become initially entangled via a purely noisy mechanism. Remarkably, for certain phenomenologically relevant environments, the quantum correlations can persist even in the asymptotic long-time regime.

MSC:

81P68 Quantum computation
81S25 Quantum stochastic calculus
82B30 Statistical thermodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/PhysRevA.62.030301 · doi:10.1103/PhysRevA.62.030301
[2] DOI: 10.1103/PhysRevA.63.040304 · Zbl 1255.81016 · doi:10.1103/PhysRevA.63.040304
[3] DOI: 10.1103/PhysRevLett.86.544 · doi:10.1103/PhysRevLett.86.544
[4] DOI: 10.1103/PhysRevLett.87.137901 · doi:10.1103/PhysRevLett.87.137901
[5] DOI: 10.1103/PhysRevA.63.062309 · doi:10.1103/PhysRevA.63.062309
[6] DOI: 10.1103/PhysRevA.65.012101 · doi:10.1103/PhysRevA.65.012101
[7] DOI: 10.1103/PhysRevLett.89.277901 · doi:10.1103/PhysRevLett.89.277901
[8] DOI: 10.1103/PhysRevA.65.040101 · doi:10.1103/PhysRevA.65.040101
[9] DOI: 10.1103/PhysRevA.65.042107 · doi:10.1103/PhysRevA.65.042107
[10] DOI: 10.1016/S0370-1573(02)00368-X · Zbl 0999.81009 · doi:10.1016/S0370-1573(02)00368-X
[11] DOI: 10.1103/PhysRevLett.91.070402 · doi:10.1103/PhysRevLett.91.070402
[12] DOI: 10.1103/PhysRevA.70.012112 · doi:10.1103/PhysRevA.70.012112
[13] Benatti F., J. Opt. B 7 pp 5429–
[14] DOI: 10.1103/PhysRevLett.77.1413 · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[15] DOI: 10.1016/S0375-9601(96)00706-2 · Zbl 1037.81501 · doi:10.1016/S0375-9601(96)00706-2
[16] DOI: 10.1016/0034-4877(78)90050-2 · Zbl 0392.47017 · doi:10.1016/0034-4877(78)90050-2
[17] DOI: 10.1103/RevModPhys.52.569 · doi:10.1103/RevModPhys.52.569
[18] Alicki R., Lecture Notes in Physics 286, in: Quantum Dynamical Semigroups and Applications (1987) · doi:10.1007/3-540-18276-4_5
[19] Breuer H.-P., The Theory of Open Quantum Systems (2002)
[20] DOI: 10.1007/BF01608389 · Zbl 0294.60080 · doi:10.1007/BF01608389
[21] DOI: 10.1007/BF01351898 · Zbl 0323.60061 · doi:10.1007/BF01351898
[22] DOI: 10.1063/1.522979 · doi:10.1063/1.522979
[23] DOI: 10.1007/BF01608499 · Zbl 0343.47031 · doi:10.1007/BF01608499
[24] DOI: 10.1103/PhysRevA.15.1613 · doi:10.1103/PhysRevA.15.1613
[25] DOI: 10.1007/978-3-540-44953-9 · doi:10.1007/978-3-540-44953-9
[26] DOI: 10.1007/BF01196936 · Zbl 0404.46050 · doi:10.1007/BF01196936
[27] DOI: 10.1103/PhysRevLett.78.5022 · doi:10.1103/PhysRevLett.78.5022
[28] DOI: 10.1103/PhysRevLett.80.2245 · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[29] Wootters W. K., Quant. Inform. Comput. 1 pp 27–
[30] DOI: 10.1142/S0217979205032097 · Zbl 1152.81861 · doi:10.1142/S0217979205032097
[31] DOI: 10.1088/0305-4470/39/11/009 · Zbl 1085.81059 · doi:10.1088/0305-4470/39/11/009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.