×

A micro-mechanical damage model based on gradient plasticity: Algorithms and applications. (English) Zbl 1098.74669

Summary: As soon as material failure dominates a deformation process, the material increasingly displays strain softening and the finite element computation is significantly affected by the element size. Without remedying this effect in the constitutive model one cannot hope for a reliable prediction of the ductile material failure process. In the present paper, a micro-mechanical damage model coupled to gradient-dependent plasticity theory is presented and its finite element algorithm is discussed. By incorporating the Laplacian of plastic strain into the damage constitutive relationship, the known mesh-dependence is overcome and computational results are uniquely correlated with the given material parameters. The implicit \(C^1\) shape function is used and can be transformed to arbitrary quadrilateral elements. The introduced intrinsic material length parameter is able to predict size effects in material failure.

MSC:

74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aifantis, International Journal of Plasticity 3 pp 211– (1987) · Zbl 0616.73106 · doi:10.1016/0749-6419(87)90021-0
[2] de Borst, International Journal for Numerical Methods in Engineering 35 pp 521– (1992) · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[3] Gradient-dependent plasticity in numerical simulation of localization phenomena. Ph.D. Thesis, Delft University of Technology, 1994.
[4] Mikkelsen, International Journal of Solids and Structures 34 pp 4531– (1997) · Zbl 0939.74528 · doi:10.1016/S0020-7683(97)00039-5
[5] Mikkelsen, Journal of the Mechanics and Physics of Solids 47 pp 953– (1999) · Zbl 0974.74025 · doi:10.1016/S0022-5096(98)00062-3
[6] Ramaswamy, Computer Methods in Applied Mechanics and Engineering 163 pp 33– (1998) · doi:10.1016/S0045-7825(98)00027-9
[7] Fleck, Journal of the Mechanics and Physics of Solids 41 pp 1825– (1993) · Zbl 0791.73029 · doi:10.1016/0022-5096(93)90072-N
[8] Fleck, Advances in Applied Mechanics 33 pp 295– (1997) · doi:10.1016/S0065-2156(08)70388-0
[9] Gurson, Journal of Engineering Materials and Technology 99 pp 2– (1977) · doi:10.1115/1.3443401
[10] Tvergaard, International Journal of Fracture 17 pp 389– (1981) · doi:10.1007/BF00036191
[11] Tvergaard, International Journal of Fracture 18 pp 273– (1982)
[12] Tvergaard, Acta Metallurgica 32 pp 157– (1984) · doi:10.1016/0001-6160(84)90213-X
[13] Leblond, Journal of Applied Mechanics 61 pp 236– (1994) · Zbl 0807.73004 · doi:10.1115/1.2901435
[14] Tvergaard, International Journal of Solids and Structures 32 pp 1063– (1995) · Zbl 0866.73060 · doi:10.1016/0020-7683(94)00185-Y
[15] Brocks, International Journal of Plasticity 11 pp 971– (1995) · Zbl 0854.73023 · doi:10.1016/S0749-6419(95)00039-9
[16] Significance of the characteristic length for micromechanical modelling of ductile fracture. Proceedings of the 3rd Conference on Localized Damage. Computational Mechanics Publisher: Southampton, 1994.
[17] Xia, Journal of Mechanics and Physics of Solids 43 pp 233– (1995) · Zbl 0879.73047 · doi:10.1016/0022-5096(94)00064-C
[18] Petera, International Journal for Numerical Methods in Engineering 37 pp 3489– (1994) · Zbl 0814.76061 · doi:10.1002/nme.1620372006
[19] Mühlhaus, International Journal of Solids and Structures 28 pp 845– (1991) · Zbl 0749.73029 · doi:10.1016/0020-7683(91)90004-Y
[20] Chu, International Journal of Engineering Materials Technology 102 pp 249– (1980) · doi:10.1115/1.3224807
[21] Hutchinson, International Journal of Solids and Structures 37 pp 225– (2000) · Zbl 1075.74022 · doi:10.1016/S0020-7683(99)00090-6
[22] Pinsky, Computer Methods in Applied Mechanics and Engineering 61 pp 41– (1987) · Zbl 0591.73082 · doi:10.1016/0045-7825(87)90115-0
[23] Simo, Computer Methods in Applied Mechanics and Engineering 74 pp 177– (1989) · Zbl 0687.73064 · doi:10.1016/0045-7825(89)90102-3
[24] ABAQUS User Manual, Version 5.6, Hibbitt, Karlsson and Sorensen, Inc: Providence, RI, 1996.
[25] The Finite Element Method in Engineering Science. MacGraw-Hill Publishing Company: London, 1971.
[26] Yuan, Computational Material Science 19 pp 143– (2000) · doi:10.1016/S0927-0256(00)00149-X
[27] Yuan, International Journal of Solids and Structures 38 pp 8171– (2001) · Zbl 1027.74029 · doi:10.1016/S0020-7683(01)00121-4
[28] Aravas, International Journal for Numerical Methods in Engineering 24 pp 1395– (1987) · Zbl 0613.73029 · doi:10.1002/nme.1620240713
[29] Giovanola, International Journal of Fracture 92 pp 101– (1998) · doi:10.1023/A:1007573002363
[30] McMeeking, International Journal of Solids and Structures 11 pp 601– (1975) · Zbl 0303.73062 · doi:10.1016/0020-7683(75)90033-5
[31] Polizzotto, European Journal of Mechanics A/Solids 17 pp 741– (1998) · Zbl 0937.74013 · doi:10.1016/S0997-7538(98)80003-X
[32] Sverberg, Computer Methods in Applied Mechanics and Engineering 161 pp 49– (1998) · Zbl 0948.74054 · doi:10.1016/S0045-7825(97)00309-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.