×

zbMATH — the first resource for mathematics

Large strain finite element analysis of a local second gradient model: application to localization. (English) Zbl 1098.74705
Summary: A large strain finite element formulation based on a local second gradient plasticity model is presented. The corresponding constitutive equations were developed as a direct extension of microstructured [K. B. Ranger, SIAM J. Appl. Math. 24, 556–561 (1973; Zbl 0236.35024); R. D. Mindlin, Arch. Ration. Mech. Anal. 16, 51–78 (1964; Zbl 0119.40302)] or micromorphic [A. C. Eringen, Mechanics of Generalized Continua, IUTAM Symposium, Kröner (ed.), Springer: Berlin, 18–35 (1967); J. Math. Mech. 15, 909–923 (1966; Zbl 0145.21302)] continua in which a mathematical constraint between the micro kinematics description and the usual macrodeformation gradient field has been introduced. This constraint is enforced in a weak sense by the use of Lagrange multipliers in order to avoid difficulties with the C1 continuity, for the finite element method. Corresponding finite elements are then constructed involving the Lagrange multipliers field. A geometrically nonlinear 2-D finite element code is developed within a framework of an incremental method. For every step, a full Newton-Raphson involving a numerical consistent tangent stiffness operator for the complete model (i.e., the second gradient terms as well as the classical ones) is done and some numerical tests allow to validate the method and to discuss the influence of the geometrical nonlinearity.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] The localization of plastic deformation. In International Congress of Theoretical and Applied Mechanics. (ed.), North Holland: Amsterdam, 1976.
[2] Pijaudier-Cabot, Journal of Engineering Mechanics 113 pp 1512– (1987) · doi:10.1061/(ASCE)0733-9399(1987)113:10(1512)
[3] Aifantis, Journal of Engineering Materials and Technology 106 pp 326– (1984) · doi:10.1115/1.3225725
[4] Ba?ant, Applied Mechanical Review 39 pp 675– (1986) · doi:10.1115/1.3143724
[5] Ba?ant, Journal of Engineering Mechanics 110 pp 1693– (1984) · doi:10.1061/(ASCE)0733-9399(1984)110:12(1693)
[6] Ba?ant, International Journal for Numerical Methods in Engineering 26 pp 1805– (1984)
[7] Zbib, Applied Mechanical Review 42 pp 295– (1989) · Zbl 0749.73031 · doi:10.1115/1.3152403
[8] Zbib, Res Mechanica 23 pp 261– (1988)
[9] Zbib, Res Mechanica 23 pp 279– (1988)
[10] de Borst, International Journal for Numerical Methods in Engineering 35 pp 521– (1992) · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[11] Gradient dependent plasticity in numerical simulation of localization phenomena. Dissertation, Delft University of Technology, Delft, 1994.
[12] Vardoulakis, Acta Mechanica 87 pp 197– (1991) · Zbl 0735.73026 · doi:10.1007/BF01299795
[13] Zervos, International Journal for Numerical Methods in Engineering 50 pp 1369– (2001) · Zbl 1047.74073 · doi:10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K
[14] Mühlhaus, Géotechnique 37 pp 271– (1987) · doi:10.1680/geot.1987.37.3.271
[15] de Borst, Engineering Computations 8 pp 317– (1991) · doi:10.1108/eb023842
[16] Théorie des corps déformables. A Hermann et Fils: Paris, 1909.
[17] Toupin, Archive for Rational Mechanics and Analysis 11 pp 385– (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[18] Mindlin, Archive for Rational Mechanics and Analysis 16 pp 51– (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[19] Germain, SIAM Journal of Applied Mathematics 25 pp 556– (1973) · Zbl 0273.73061 · doi:10.1137/0125053
[20] Mindlin, International Journal of Solids and Structures 1 pp 417– (1965) · doi:10.1016/0020-7683(65)90006-5
[21] Mechanics of micromorphic continua. In Mechanics of Generalized Continua, IUTAM Symposium. (ed.), Springer: Berlin, 1968; 18-35. · doi:10.1007/978-3-662-30257-6_2
[22] Green, Archive for Rational Mechanics and Analysis 16 pp 325– (1964)
[23] Eringen, Journal of Mathematics and Mechanics 15 pp 909– (1966)
[24] Kröner, International Journal of Solids and Structures 3 pp 731– (1967) · Zbl 0163.19402 · doi:10.1016/0020-7683(67)90049-2
[25] The theory of elastic media with microstructure and the theory of dislocation. In Mechanics of Generalized Continua, IUTAM Symposium, (ed.), Springer: Berlin, 1968; 321-329. · doi:10.1007/978-3-662-30257-6_39
[26] Xikui, International Journal for Numerical Methods in Engineering 39 pp 619– (1996) · Zbl 0846.73064 · doi:10.1002/(SICI)1097-0207(19960229)39:4<619::AID-NME873>3.0.CO;2-1
[27] Steinmann, International Journal of Solids and Structures 31 pp 1063– (1994) · Zbl 0945.74523 · doi:10.1016/0020-7683(94)90164-3
[28] Steinmann, International Journal for Numerical Methods in Engineering 46 pp 757– (1999) · Zbl 0978.74006 · doi:10.1002/(SICI)1097-0207(19991020)46:5<757::AID-NME731>3.0.CO;2-N
[29] Germain, Journal de Mécanique 12 pp 235– (1973)
[30] Chambon, International Journal of Solids and Structures 38 pp 8503– (2001) · Zbl 1047.74522 · doi:10.1016/S0020-7683(01)00057-9
[31] Chambon, European Journal of Mechanics A/Solids 17 pp 637– (1998) · Zbl 0936.74020 · doi:10.1016/S0997-7538(99)80026-6
[32] Matsushima, C.R.A.S IIb pp 179– (2000)
[33] Fleck, Journal of Mechanics and Physics of Solids 41 pp 1825– (1993) · Zbl 0791.73029 · doi:10.1016/0022-5096(93)90072-N
[34] Fleck, Advances in Applied Mechanics 33 pp 295– (1997) · doi:10.1016/S0065-2156(08)70388-0
[35] Shu, International Journal for Numerical Methods in Engineering 44 pp 373– (1999) · Zbl 0943.74072 · doi:10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7
[36] The non linear field theories of mechanics. Encyclopaedia of Physics. Springer: Berlin, 1965.
[37] Chen, Journal of Applied Mechanics 67 pp 105– (2000) · Zbl 1110.74371 · doi:10.1115/1.321155
[38] Simo, Computer Methods in Applied Mechanics and Engineering 48 pp 101– (1985) · Zbl 0535.73025 · doi:10.1016/0045-7825(85)90070-2
[39] Mechanics of Incremental Deformation. Wiley: New York, 1965.
[40] Chambon, International Journal for Numerical Methods in Engineering 51 pp 315– (2001) · Zbl 1047.74079 · doi:10.1002/nme.199
[41] Approche unifiée de quelques problèmes non linéaires de mécanique des lilieux continus par la méthode des éléments finis. Dissertation, UniversitédeLiège, Liège, 1987.
[42] Non-linear Finite Element Analysis of Solids and Structures, I. Wiley: New York, 1991.
[43] Continuum models for discontinuous media. In Fracture Processes in Concrete, Rocks and Ceramics. Van Mier JGM et al. (eds), 1991; 601-618.
[44] Edelen, Archives of Rational Mechanical Analysis 43 pp 25– (1971)
[45] Elastic Media with Microstructure, I, II. Springer: Berlin, 1982. · doi:10.1007/978-3-642-81748-9
[46] Mühlhaus, International Journal of Solids and Structures 28 pp 845– (1991) · Zbl 0749.73029 · doi:10.1016/0020-7683(91)90004-Y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.