×

zbMATH — the first resource for mathematics

Connection graph stability method for synchronized coupled chaotic systems. (English) Zbl 1098.82622
Summary: This paper elucidates the relation between network dynamics and graph theory. A new general method to determine global stability of total synchronization in networks with different topologies is proposed. This method combines the Lyapunov function approach with graph theoretical reasoning. In this context, the main step is to establish a bound on the total length of all paths passing through an edge on the network connection graph. In particular, the method is applied to the study of synchronization in rings of 2K-nearest neighbor coupled oscillators. A rigorous bound is given for the minimum coupling strength sufficient for global synchronization of all oscillators. This bound is explicitly linked with the average path length of the coupling graph. Contrary to the master stability function approach developed by Pecora and Carroll, the connection graph stability method leads to global stability of synchronization, and it permits not only constant, but also time-dependent interaction coefficients. In a companion paper (”Blinking model and synchronization in small-world networks with a time-varying coupling,” see this issue), this method is extended to the blinking model of small-world networks where, in addition to the fixed 2K-nearest neighbor interactions, all the remaining links are rapidly switched on and off independently of each other.

MSC:
82C99 Time-dependent statistical mechanics (dynamic and nonequilibrium)
05C20 Directed graphs (digraphs), tournaments
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fujisaka, H.; Yamada, T.; Fujisaka, H.; Yamada, T., Prog. theor. phys., Prog. theor. phys., 72, 885, (1984)
[2] Afraimovich, V.S.; Verichev, N.N.; Rabinovich, M.I., Radiophys. quant. electron., 29, 795, (1986)
[3] Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 64, 821, (1990)
[4] V.N. Belykh, N.N. Verichev, L.J. Kocarev, L.O. Chua, in: R.N. Madan (Ed.), Chua’s Circuit: A Paradigm for Chaos, World Scientific, Singapore, 1993, 325.
[5] Heagy, J.F.; Carroll, T.L.; Pecora, L.M., Phys. rev. E, 50, 1874, (1994)
[6] Heagy, J.F.; Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 74, 4185, (1994)
[7] Wu, C.W.; Chua, L.O., IEEE trans. circuits syst. I: fundam. theory appl., 43, 161, (1996)
[8] Pecora, L.M.; Carroll, T.L.; Johnson, G.A.; Mar, D.J.; Heagy, J.F., Chaos, 7, 520, (1997), and references therein · Zbl 0933.37030
[9] Afraimovich, V.S.; Chow, S.N.; Hale, J.K., Physica D, 103, 442, (1997)
[10] Hale, J.K., J. dyn. diff. eq., 9, 1, (1997)
[11] Afraimovich, V.S.; Lin, W.W., Dyn. stab. syst., 13, 237, (1998)
[12] Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 80, 2109, (1998)
[13] Pecora, L.M., Phys. rev. E., 58, 347, (1998)
[14] Josić, K., Nonlinearity, 13, 1321, (2000)
[15] Zanette, D.H.; Mikhailov, A.S., Phys. rev. E, 57, 276, (1998)
[16] Manrubia, S.C.; Mikhailov, A.S., Phys. rev. E, 60, 1579, (1999)
[17] Pogromsky, A.Yu.; Nijmeijer, H., IEEE trans. circuits syst. I: fundam. theory appl., 48, 152, (2001)
[18] C.W. Wu, in: L.O. Chua (Ed.), Synchronization in Coupled Chaotic Circuits and Systems, vol. 41, World Scientific Series on Nonlinear Science, Series A, World Scientific, Singapore, 2002. · Zbl 1007.34044
[19] Wu, C.W., IEEE trans. circuits syst. I: fundam. theory appl., 50, 294, (2003)
[20] Jost, J.; Joy, M.P., Phys. rev. E, 65, 016201, (2001)
[21] Rangarajan, G.; Ding, M., Phys. lett. A, 296, 204, (2002)
[22] Chen, Y.; Rangarajan, G.; Ding, M., Phys. rev. E., 67, 026209, (2003)
[23] Wang, X.F.; Chen, G., IEEE trans. circuits syst. I: fundam. theory appl., 49, 54, (2002)
[24] Barahona, M.; Pecora, L.M., Phys. rev. lett., 89, 054101, (2002)
[25] Belykh, V.N.; Belykh, I.V.; Hasler, M.; Nevidin, K.V., Int. J. bifurc. chaos, 13, 756, (2003)
[26] Kaneko, K.; Kaneko, K.; Kaneko, K.; Kaneko, K., Physica D, Physica D, Physica D, Physica D, 75, 55, (1994)
[27] Sherman, A., Bull. math. biol., 56, 811, (1994)
[28] Terry, J.R.; Thornburg, K.S.; DeShazer, D.J.; Vanwiggeren, G.D.; Zhu, S.; Ashwin, P.; Roy, R., Phys. rev. E, 59, 4036, (1999)
[29] Belykh, V.N.; Belykh, I.V.; Hasler, M., Phys. rev. E, 62, 6332, (2000)
[30] Belykh, I.V.; Belykh, V.N.; Nevidin, K.V.; Hasler, M., Chaos, 13, 165, (2003)
[31] Pogromsky, A.Yu.; Santoboni, G.; Nijmeijer, H., Physica D, 172, 65, (2002)
[32] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge University Press, Cambridge, 2001. · Zbl 0993.37002
[33] Ashwin, P.; Buescu, J.; Stewart, I.; Ashwin, P.; Buescu, J.; Stewart, I.; Hasler, M.; Maistrenko, Yu., Phys. lett. A, Nonlinearity, IEEE trans. circuits syst. I: fundam. theory appl., 44, 856, (1997)
[34] Rulkov, N.F.; Suschik, M.M.; Tsimring, L.S.; Abarbanel, H.D.I.; Abarbanel, H.D.; Rulkov, N.F.; Sushik, M.M.; Kocarev, L.; Parlitz, U., Phys. rev. E, Phys. rev. E, Phys. rev. lett., 76, 1816, (1996)
[35] J. Kurths, S. Boccaletti, C. Grebogi, Y.-C. Lai (Organizers), Focus Issue: Control and Synchronization in Chaotic Dynamical Systems, Chaos 13 (2003) 126.
[36] Y. Kuramoto, in: H. Araki (Ed.), International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics 39, Springer-Verlag, Berlin, 1975, p. 420.
[37] Kopell, N.; Ermentrout, G.B., Math. biosci., 90, 87, (1988)
[38] Watanabe, S.; Strogatz, S.H., Phys. rev. lett., 70, 2391, (1993)
[39] Strogatz, S.H.; Mirollo, R.E., Physica D, 31, 143-168, (1988)
[40] Somers, D.; Kopell, N., Physica D, 89, 169, (1995)
[41] I.V. Belykh, V.N. Belykh, M. Hasler, Physica D, this issue.
[42] Belykh, I.V., Radiophys. quant. electron., 38, 69, (1995)
[43] Watts, D.J.; Strogatz, S.H., Nature, 393, 440, (1998)
[44] Strogatz, S.H., Nature, 410, 268, (2001)
[45] Newman, M.E.J.; Moore, C.; Watts, D.J., Phys. rev. lett., 84, 3201, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.