×

zbMATH — the first resource for mathematics

Existence of solution and positive solution of BVP for nonlinear third-order dynamic equation. (English) Zbl 1099.34022
Summary: We are concerned with the following third-order two-point boundary value problem on time scale \(\mathbb{T}\) \[ \begin{cases} u^{\Delta\Delta\Delta} (t)+f\bigl(t,u(t), u^{\Delta\Delta}(t)\bigr)=0,\;t\in\bigl[a,\rho(b)\bigr],\\ u(a)=A,\;u\bigl( \sigma^2(b)\bigr)=B,\;u^{\Delta\Delta}(a)=C. \end{cases} \] Some existence criteria for a solution and for a positive solution are established by using Leray-Schauder’s fixed-point theorem. Our main conditions are local. An example is included, too.

MSC:
34B15 Nonlinear boundary value problems for ordinary differential equations
39A10 Additive difference equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwal, R.P.; Bohner, M., Basic calculus on time scales and some of its applications, Results math., 35, 3-22, (1999) · Zbl 0927.39003
[2] R.P. Agarwal, M. Bohner, W.T. Li, Nonoscillation and oscillation theory for functional differential equations, Pure and Applied Mathematics Series, Marcel Dekker, New York, 2004. · Zbl 1068.34002
[3] Agarwal, R.P.; Bohner, M.; Wong, P., Sturm – liouville eigenvalue problems on time scales, Appl. math. comput., 99, 153-166, (1999) · Zbl 0938.34015
[4] Agarwal, R.P.; O’Regan, D., Nonlinear boundary value problems on time scales, Nonlinear anal., 44, 527-535, (2001) · Zbl 0995.34016
[5] Anderson, D., Solutions to second-order three-point problems on time scales, J. differential equations appl., 8, 673-688, (2002) · Zbl 1021.34011
[6] Atici, E.M.; Guseinov, G.Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. comput. appl. math., 141, 75-99, (2002) · Zbl 1007.34025
[7] Bohner, M.; Peterson, A., Dynamic equations on time scales, (2001), Springer New York · Zbl 1021.34005
[8] Bohner, M.; Peterson, A., Advances in dynamic equations on time scales, (2003), Birkhauser Boston · Zbl 1025.34001
[9] Cabada, A.; Lois, S., Existence of solution for discontinuous third order boundary value problems, J. comput. appl. math., 110, 105-114, (1999) · Zbl 0936.34015
[10] Chyan, C.J.; Henderson, J., Eigenvalue problems for nonlinear differential equations on a measure chain, J. math. anal. appl., 245, 547-559, (2000) · Zbl 0953.34068
[11] Erbe, L.; Hilger, S., Sturmian theory on measure chains, Differential equation dyn. systems, 1, 223-246, (1993) · Zbl 0868.39007
[12] Erbe, L.; Peterson, A., Positive solutions for a nonlinear differential equation on a measure chain, Math. comput. modelling, 32, 5-6, 571-585, (2000) · Zbl 0963.34020
[13] GulsanTopal, S., Second-order periodic boundary value problems on time scales, Comput. math. appl., 48, 637-648, (2004) · Zbl 1068.34016
[14] Henderson, J., Double solutions of impulsive dynamic boundary value problems on a time scale, J. differential equations appl., 8, 345-356, (2002) · Zbl 1003.39019
[15] Henderson, J.; Yin, W.K.C., Existence of solutions for third-order boundary value problems on a time scale, Comput. math. appl., 45, 1101-1111, (2003) · Zbl 1057.39011
[16] Hilger, S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results math., 18, 18-56, (1990) · Zbl 0722.39001
[17] Kaymakcalan, B.; Lakshmikanthan, V.; Sivasundaram, S., Dynamic systems on measure chains, (1996), Kluwer Academic Publishers Boston · Zbl 0869.34039
[18] Sun, J.P., A new existence theorem for right focal boundary value problems on a measure chain, Appl. math. lett., 18, 41-47, (2005) · Zbl 1074.34017
[19] Yao, Q., Solution and positive solution for a semilinear third-order two-point boundary value problem, Appl. math. lett., 17, 1171-1175, (2004) · Zbl 1061.34012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.