×

Least-squares estimation in linear regression models with vague concepts. (English) Zbl 1099.62071

Summary: The paper is a contribution to parameter estimation in fuzzy regression models with random fuzzy sets. Here models with crisp parameters and fuzzy observations of the variables are investigated. This type of regression models may be understood as an extension of the ordinary single equation linear regression models by integrating additionally the physical vagueness of the involved items. So the significance of these regression models is to improve the empirical meaningfulness of the relationship between the items by a more sensitive attention to the fundamental adequacy problem of measurement. Concerning the parameter estimation, the ordinary least-squares method is extended. The existence of estimators by the suggested method is shown, and some of their stochastic properties are surveyed.

MSC:

62J05 Linear regression; mixed models
62F10 Point estimation
62J99 Linear inference, regression
62F99 Parametric inference
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berberian, S.K., Lectures in functional analysis and operator theory, (1974), Springer New York · Zbl 0296.46002
[2] Burda, M.; Wyplosz, C., Gross worker and job flows in Europe, European econom. rev., 38, 1287-1315, (1994)
[3] Buttler, F.; Cramer, U., Entwicklung und ursachen von mis-match- arbeitslosigkeit in westdeutschland, Mitteilungen aus der arbeitsmarkt- und berufsforschung, 24, 483-500, (1991)
[4] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, vol. 580, Springer, Berlin, Heidelberg, New York, 1977. · Zbl 0346.46038
[5] Diamond, P., Least squares and maximum likelihood regression for fuzzy linear models, (), 137-151 · Zbl 0778.62059
[6] Diamond, P.; Tanaka, H., Fuzzy regression analysis, (), 349-387 · Zbl 0922.62058
[7] Dunford, N.; Schwarz, J.T., Linear operators, part I, (1958), Interscience New York
[8] Franz, W., Arbeitsökonomik, (1999), Springer Berlin
[9] Fréchet, M., LES éléments aléatoires de nature quelconque dans un espace distancié, Ann. inst. H. Poincaré, X, 215-310, (1948) · Zbl 0035.20802
[10] Grohmann, H., Vom theoretischen konstrukt zum statistischen begriff. das adäquationsproblem, Allgemeines statistisches archiv, 69, 1-15, (1985)
[11] Hartwig, H., Naturwissenschaftliche und sozialwissenschaftliche statistik, Zeitschrift für die gesamte staatswissenschaft, 112, 252-266, (1956)
[12] R. Körner, Linear models with random fuzzy variables, Ph.D. Thesis at the Faculty of Mathematics and Informational Sciences, Technical University of Freiberg, 1995.
[13] Körner, R., On the variance of fuzzy random variables, Fuzzy sets and systems, 92, 83-93, (1997) · Zbl 0936.60017
[14] Körner, R.; Näther, W., Linear regression with random fuzzy variables: extended classical estimates, least squares estimates, Inform. sci., 109, 95-118, (1998) · Zbl 0930.62072
[15] Krätschmer, V., A unified approach to fuzzy random variables, Fuzzy sets and systems, 123, 1-9, (2001) · Zbl 1004.60003
[16] V. Krätschmer, Induktive Statistik auf Basis unscharfer Meßkonzepte am Beispiel linearer Regressionsmodelle, postdoctoral thesis, Faculty of Law and Economics of the University of Saarland, Saarbrücken, 2001.
[17] Krätschmer, V., Limit theorems for fuzzy-random variables, Fuzzy sets and systems, 126, 253-263, (2002) · Zbl 0996.60042
[18] Krätschmer, V., Some complete metrics on spaces of fuzzy subsets, Fuzzy sets and systems, 130, 357-365, (2002) · Zbl 1046.54003
[19] Krätschmer, V., Probability theory in fuzzy sample spaces, Metrika, 60, 167-189, (2004) · Zbl 1083.60004
[20] Krätschmer, V., Strong consistency of least squares estimation in linear regression models with vague concepts, J. multivariate anal., 97, 633-654, (2006) · Zbl 1085.62025
[21] V. Krätschmer, Integrals of random fuzzy sets, Test (in press), to appear.
[22] V. Krätschmer, Limit distributions of least squares estimators in linear regression models with vague concepts, J. Multivariate Anal. 97 (2006) 1044-1069. · Zbl 1119.62014
[23] Menges, G., Die statistische adäquation, Jahrbücher für nationalökonomie und statistik, 197, S.289-S.307, (1982)
[24] Näther, W., On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data, Metrika, 51, 201-221, (2000) · Zbl 1093.62557
[25] Pfanzagl, J., Parametric statistical theory, (1994), de Gruyter Berlin, New York · Zbl 0481.62018
[26] Puri, M.L.; Ralescu, D.A., Fuzzy random variables, J. math. anal. appl., 114, 409-422, (1986) · Zbl 0592.60004
[27] Tanaka, H.; Uegima, S.; Asai, K., Linear regression analysis with fuzzy model, IEEE trans. systems man cybernet., 12, 903-907, (1982) · Zbl 0501.90060
[28] Wang, H.-F.; Tsaur, R.-C., Insight of a fuzzy regression model, Fuzzy sets and systems, 112, 355-369, (2000) · Zbl 0948.62050
[29] B. Wu, N.-F. Tseng, A new approach to fuzzy regression models with application to business cycle analysis, Fuzzy Sets and Systems 130, 2002.
[30] Wünsche, A.; Näther, W., Least-squares fuzzy regression with fuzzy random variables, Fuzzy sets and systems, 130, 43-50, (2002) · Zbl 1010.62067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.