×

Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners. (English) Zbl 1099.65105

Summary: Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
51M20 Polyhedra and polytopes; regular figures, division of spaces
PDFBibTeX XMLCite
Full Text: DOI EuDML Link

References:

[1] T. Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numer. Math. B. G. Teubner, Leipzig, 1999.
[2] T. Apel, F. Milde: Comparison of several mesh refinement strategies near edges. Commun. Numer. Methods Eng. 12 (1996), 373–381. · Zbl 0865.65086 · doi:10.1002/(SICI)1099-0887(199607)12:7<373::AID-CNM985>3.0.CO;2-8
[3] T. Apel, S. Nicaise: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998), 519–549. · Zbl 0911.65107 · doi:10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R
[4] O. Axelsson, V. A. Barker: Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press, Orlando, 1984. · Zbl 0537.65072
[5] M. Bern, P. Chew, D. Eppstein, and J. Ruppert: Dihedral bounds for mesh generation in high dimensions. Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995). SIAM, Philadelphia, 1995, pp. 189–196. · Zbl 0849.68116
[6] F. Bornemann, B. Erdmann, and R. Kornhuber: Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng. 36 (1993), 3187–3203. · Zbl 0780.73073 · doi:10.1002/nme.1620361808
[7] E. Bansch: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3 (1991), 181–191. · Zbl 0744.65074 · doi:10.1016/0899-8248(91)90006-G
[8] L. Collatz: Numerische Behandlung von Differentialgleichungen. Springer-Verlag, Berlin-Gottingen-Heidelberg, 1951. · Zbl 0044.33103
[9] R. Cools: Monomial cubature rules since ”Stroud”: A compilation. II. J. Comput. Appl. Math. 112 (1999), 21–27. · Zbl 0954.65021 · doi:10.1016/S0377-0427(99)00229-0
[10] R. Cools, P. Rabinowitz: Monomial cubature rules since ”Stroud”: A compilation. J. Comput. Appl. Math. 48 (1993), 309–326. · Zbl 0799.65027 · doi:10.1016/0377-0427(93)90027-9
[11] H. S. M. Coxeter: Trisecting an orthoscheme. Comput. Math. Appl. 17 (1989), 59–71. · Zbl 0706.51019 · doi:10.1016/0898-1221(89)90148-X
[12] M. Dauge: Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math., Vol. 1341. Springer-Verlag, Berlin, 1988. · Zbl 0668.35001
[13] M. Feistauer, J. Felcman, M. Rokyta, and Z. Vlasek: Finite-element solution of flow problems with trailing conditions. J. Comput. Appl. Math. 44 (1992), 131–165. · Zbl 0766.76049 · doi:10.1016/0377-0427(92)90008-L
[14] G. Fichera: Numerical and Quantitative Analysis. Surveys and Reference Works in Mathematics, Vol. 3. Pitman (Advanced Publishing Program), London-San Francisco-Melbourne, 1978. · Zbl 0384.65043
[15] H. Fujii: Some remarks on finite element analysis of time-dependent field problems. Theory Pract. Finite Elem. Struct. Analysis. Univ. Tokyo Press, Tokyo, 1973, pp. 91–106.
[16] B. Q. Guo: The h-p version of the finite element method for solving boundary value problems in polyhedral domains. Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993). Lect. Notes Pure Appl. Math., Vol. 167 (M. Costabel, M. Dauge, and C. Nicaise, eds.). Marcel Dekker, New York, 1995, pp. 101–120. · Zbl 0855.65114
[17] P. Keast: Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Eng. 55 (1986), 339–348. · Zbl 0572.65008 · doi:10.1016/0045-7825(86)90059-9
[18] S. Korotov, M. Krizek: Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001), 724–733. · Zbl 1069.65017 · doi:10.1137/S003614290037040X
[19] S. Korotov, M. Krizek: Local nonobtuse tetrahedral refinements of a cube. Appl. Math. Lett. 16 (2003), 1101–1104. · Zbl 1046.65106 · doi:10.1016/S0893-9659(03)90101-7
[20] I. Kossaczky: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55 (1994), 275–288. · Zbl 0823.65119 · doi:10.1016/0377-0427(94)90034-5
[21] M. Krizek, L. Liu: On the maximum and comparison principles for a steady-state non-linear heat conduction problem. Z. Angew. Math. Mech. 83 (2003), 559–563. · Zbl 1030.35061 · doi:10.1002/zamm.200310054
[22] M. Krizek, Qun Lin: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1995), 59–69. · Zbl 0824.65112
[23] M. Krizek, T. Strouboulis: How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition. Numer. Methods Partial Differ. Equations 13 (1997), 201–214. · Zbl 0879.65078 · doi:10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T
[24] J. M. Maubach: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16 (1995), 210–227. · Zbl 0816.65090 · doi:10.1137/0916014
[25] M. Picasso: Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Commun. Numer. Methods Eng. 19 (2003), 13–23. · Zbl 1021.65052 · doi:10.1002/cnm.546
[26] M. Picasso: An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003), 1328–1355. · Zbl 1061.65116 · doi:10.1137/S1064827501398578
[27] A. Plaza, G. F. Carey: Local refinement of simplicial grids based on the skeleton. Appl. Numer. Math. 32 (2000), 195–218. · Zbl 0940.65142 · doi:10.1016/S0168-9274(99)00022-7
[28] H. Schmitz, K. Volk, and W. Wendland: Three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Equations 9 (1993), 323–337. · Zbl 0771.73014 · doi:10.1002/num.1690090309
[29] R. S. Varga: Matrix iterative analysis. Prentice-Hall, New Jersey, 1962. · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.