×

Normalizable, integrable and linearizable saddle points in the Lotka-Volterra system. (English) Zbl 1100.34022

Authors’ summary: We consider the Lotka-Volterra equations \[ \dot x = x(1 + ax + by), \quad y = y(-\lambda+cx+dy), \]
with \(\lambda\) a nonnegative number. Our aim is to understand the mechanisms which lead to the origin being linearizable, integrable or normalizable. In the case of integrability and linearizability, there is a natural dichotomy. When the system has an invariant line other than the axes, then the system is integrable and we give necessary and sufficient conditions for linearizability in this case. When there is no such line, then the conditions for linearizability and integrability are the same. In this case, we show that the monodromy groups of the separatrices play a key role. In particular for \(\lambda= p/q\) with \(p+q\leq 12\) and \(\lambda = n/2, 2/n\) with \(n\in\mathbb N\), the origin is linearizable if and only if the monodromy groups can be shown to be linearizable by elementary arguments. We give 4 classes of these conditions, and their duals, in terms of the parameters of the system, and conjecture that these, together with two exceptional cases of Darboux linearizability, are the only integrability mechanisms for rational values of \(\lambda\). The work on normalizability is more tentative. We give some sufficient conditions for this via monodromy groups, and give a complete classification when \(\lambda = 0\). We also investigate in detail the case \(\lambda = 1\), with \(a + c = 0\). Much of our ideas here are based on recent work on the unfolding of the Ecalle-Voronin modulus of analytic classification. In particular, we give examples of “half- normalizable” systems as well as an experimental example of a “transcritical bifurcation” of the functional moduli associated to the critical point.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. Cairo, H. Giacomini andJ. Llibre,Liouvillian first integrals for the planar Lotka-Volterra system, Rend. Cir. Mat. Palermo,52 (2003), 389–418. · Zbl 1194.34014
[2] C. Christopher, P. Mardešić andC. Rousseau,Normalizable, integrable and linearizable points in complex quadratic systems in C2, J. Dynam and Control Syst.,9 (2003), 311–363. · Zbl 1022.37035
[3] J. Ecalle,Les fonctions résurgentes, Publications mathématiques d’Orsay, 1985.
[4] A. Fronville, A. Sadovski andH. \.Zolek,Solution of the 1 resonant center problem in the quadratic case, Fundamenta Mathematicae,157 (1998), 191–207. · Zbl 0943.34018
[5] A. A. Glutsyuk,Confluence of singular points and nonlinear Stokes phenomenon, Trans. Moscow Math. Soc.,62 (2001). · Zbl 1004.34081
[6] S. Gravel andP. Thibault,Integrability and linearizability of the Lotka-Volterra system for {\(\lambda\)}, J. Differential Equations,184 (2002), 20–47. · Zbl 1054.34049
[7] H. Hukuhara, T. Kimura and T. Matuda,Équations différentielles ordinaires du premier ordre dans le champ complexe, Math. Soc. of Japan (1961). · Zbl 0101.30002
[8] Y. Ilyashenko,Nonlinear Stokes phenomena, in Nonlinear Stokes phenomena, Y. Hyashenko editor, Advances in Soviet Mathematics, vol. 14, American Mathematical Society (1993). · Zbl 0863.34029
[9] Y. S. Ilyashenko andA. S. Pyartli,Materialization of Poincaré resonances and divergence of normalizing series, J. Sov. Math.31 (1985), 3053–3092. · Zbl 0575.34037
[10] V. Kostov,Versal deformations of differential forms of degree {\(\alpha\)} on the line, Functional Anal. Appl.,18 (1984), 335–337. · Zbl 0573.58002
[11] C. Liu, G. Chen andC. Li,Integrability and linearizability in the Lotka-Volterra systems, J. Differential Equations,198 (2004), 301–320. · Zbl 1046.34075
[12] A. Lins Neto,Algebraic solutions of polynomial differential equations and foliations in dimension two, in Holomorphic Dynamics, Lect. Notes in Math.135 (1988), 192–232.
[13] P. Mardešić, R. Roussarie andC. Rousseau,Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms, Moscow Mathematical Journal,4 (2004), 455–502. · Zbl 1077.37035
[14] J. Martinet andJ.-P. Ramis,Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math., Inst. Hautes Etud. Sci.55 (1982), 63–164. · Zbl 0546.58038
[15] J.-F. Mattei andR. Moussu,Holonomie et intégrales premières, Ann. Scient. Éc. Norm. Sup., 4 e série13 (1980), 469–523. · Zbl 0458.32005
[16] J. Moulin-Ollagnier,Liouvillian integration of the Lotka-Volterra system, Qualitative Theory of Dynamical Systems,3 (2002), 19–28. · Zbl 1054.34003
[17] R. Pérez-Marco andJ.-C. Yoccoz,Germes de feuilletages holomorphes à holonomie prescrite, Astérisque,222 (1994), 345–371. · Zbl 0809.32008
[18] C. Rousseau,Normal forms, bifurcations and finiteness properties of vector fields, inNormal forms, bifurcations and finiteness properties of vector fields, Proceedings of NATO Advanced Study Institute Montreal 2002, Kluwer, 2004, 431–470.
[19] C. Rousseau,Modulus of analytic classification for a family unfolding a saddle-node, to appear in Moscow Mathematical Journal. · Zbl 1089.37018
[20] S. M. Voronin,Invariants for points of holomorphic vector fields on the complex plane, in The Stokes phenomenon and Hilbert’s 16th problem (Groningen, 1995), World Sci. Publishing, River Edge, NJ (1996), 305–323.
[21] J.-C. Yoccoz,Théorème de Siegel, nombres de Brjuno et polynômes quadratiques, Astérisque231 (1995), 1–88.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.