×

Density estimation. (English) Zbl 1100.62558

Summary: This paper provides a practical description of density estimation based on kernel methods. An important aim is to encourage practicing statisticians to apply these methods to data. As such, reference is made to implementations of these methods in R, S-PLUS and SAS.

MSC:

62G07 Density estimation

Software:

SAS; sm; KernSmooth; MASS (R); S-PLUS; R
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Baxter, M. J., Beardah, C. C. and Westwood, S. (2000). Sample size and related issues in the analysis of lead isotope data. J. Archaeological Science 27 973–980.
[2] Bowman, A. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71 353–360. JSTOR:
[3] Bowman, A. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford Univ. Press. · Zbl 0889.62027
[4] Deheuvels, P. (1977). Estimation nonparamétrique de la densité par histogrammes généralisés. Rev. Statist. Appl. 25 5–42.
[5] DiNardo, J., Fortin, N. M. and Lemieux, T. (1996). Labor market institutions and the distribution of wages, 1973–1992: A semiparametric approach. Econometrica 64 1001–1044.
[6] Ferreyra, R. A., Podesta, G. P., Messina, C. D., Letson, D., Dardanelli, J., Guevara, E. and Meira, S. (2001). A linked-modeling framework to estimate maize production risk associated with ENSO-related climate variability in Argentina. Agricultural and Forest Meteorology 107 177–192.
[7] Gu, C. (1998). Model indexing and smoothing parameter selection in nonparametric function estimation (with discussion). Statist. Sinica 8 607–646. · Zbl 0901.62058
[8] Hall, P. (1983). Large sample optimality of least-squares cross-validation in density estimation. Ann. Statist. 11 1156–1174. JSTOR: · Zbl 0599.62051
[9] Hall, P. and Marron, J. S. (1987a). Extent to which least-squares cross-validation minimizes integrated square error in nonparametric density estimation. Probab. Theory Related Fields 74 567–581. · Zbl 0588.62052
[10] Hall, P. and Marron, J. S. (1987b). Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6 109–115. · Zbl 0628.62029
[11] Hall, P. and Marron, J. S. (1991). Local minima in cross-validation functions. J. Roy. Statist. Soc. Ser. B 53 245–252. JSTOR: · Zbl 0800.62216
[12] Hall, P. and Minnotte, M. C. (2002). Higher order data sharpening for density estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 141–157. JSTOR: · Zbl 1015.62031
[13] Hall, P. and Tao, T. (2002). Relative efficiencies of kernel and local likelihood density estimators. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 537–547. JSTOR: · Zbl 1073.62031
[14] Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation. Ann. Statist. 24 1619–1647. · Zbl 0867.62030
[15] Jones, M. C., Marron, J. S. and Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. J. Amer. Statist. Assoc. 91 401–407. JSTOR: · Zbl 0873.62040
[16] Kim, K.-D. and Heo, J.-H. (2002). Comparative study of flood quantiles estimation by nonparametric models. J. Hydrology 260 176–193.
[17] Loader, C. R. (1996). Local likelihood density estimation. Ann. Statist. 24 1602–1618. · Zbl 0867.62034
[18] Loader, C. R. (1999). Local Regression and Likelihood . Springer, New York. · Zbl 0929.62046
[19] Marron, J. S. and Chung, S. S. (2001). Presentation of smoothers: The family approach. Comput. Statist. 16 195–207. · Zbl 1007.62027
[20] Paulsen, O. and Heggelund, P. (1996). Quantal properties of spontaneous EPSCs in neurones of the Guinea-pig dorsal lateral geniculate nucleus. J. Physiology 496 759–772.
[21] Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 65–78. · Zbl 0501.62028
[22] Samiuddin, M. and El-Sayyad, G. M. (1990). On nonparametric kernel density estimates. Biometrika 77 865–874. JSTOR: · Zbl 0712.62033
[23] Scott, D. W. (1979). On optimal and data-based histograms. Biometrika 66 605–610. JSTOR: · Zbl 0417.62031
[24] Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization . Wiley, New York. · Zbl 0850.62006
[25] Scott, D. W. and Terrell, G. R. (1987). Biased and unbiased cross-validation in density estimation. J. Amer. Statist. Assoc. 82 1131–1146. JSTOR: · Zbl 0648.62037
[26] Segal, M. R. and Wiemels, J. L. (2002). Clustering of translocation breakpoints. J. Amer. Statist. Assoc. 97 66–76. JSTOR: · Zbl 1073.62588
[27] Sheather, S. J. (1992). The performance of six popular bandwidth selection methods on some real data sets (with discussion). Comput. Statist. 7 225–281. · Zbl 0775.62103
[28] Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. Ser. B 53 683–690. JSTOR: · Zbl 0800.62219
[29] Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. J. Roy. Statist. Soc. Ser. B 43 97–99. JSTOR:
[30] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis . Chapman and Hall, London. · Zbl 0617.62042
[31] Simonoff, J. S. (1996). Smoothing Methods in Statistics . Springer, New York. · Zbl 0859.62035
[32] Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist. 12 1285–1297. JSTOR: · Zbl 0599.62052
[33] Terrell, G. R. (1990). The maximal smoothing principle in density estimation. J. Amer. Statist. Assoc. 85 470–477. JSTOR:
[34] Terrell, G. R. and Scott, D. W. (1985). Oversmoothed nonparametric density estimates. J. Amer. Statist. Assoc. 80 209–214. JSTOR:
[35] Tortosa-Ausina, E. (2002). Financial costs, operating costs, and specialization of Spanish banking firms as distribution dynamics. Applied Economics 34 2165–2176.
[36] Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S , 4th ed. Springer, New York. · Zbl 1006.62003
[37] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing . Chapman and Hall, London. · Zbl 0854.62043
[38] Woodroofe, M. (1970). On choosing a delta-sequence. Ann. Math. Statist. 41 1665–1671. · Zbl 0229.62022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.