×

zbMATH — the first resource for mathematics

Group field theory: an overview. (English) Zbl 1100.83010
Summary: We give a brief overview of the properties of a higher-dimensional generalization of matrix model which arise naturally in the context of a background approach to quantum gravity, the so-called group field theory. We show in which sense this theory provides a third quantization point-of-view on quantum gravity.

MSC:
83C45 Quantization of the gravitational field
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83E15 Kaluza-Klein and other higher-dimensional theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ambjorn, J., Durhuus, B., and Jonsson, T. (1991). Three-dimensional simplicial quantum gravity and generalized matrix models. Modern Physics Letters A 6, 1133. · Zbl 1020.83537 · doi:10.1142/S0217732391001184
[2] Ashtekar, A. and Lewandowski, J. (2004). Background independent quantum gravity: A status report. Classical Quantum Gravity 21, R53 (2004) [arXiv:gr-qc/0404018]. · Zbl 1077.83017
[3] Baez, J. C. (1996). Four-Dimensional BF theory with cosmological term as a topological quantum field theory. Letters of Mathematical Physics 38, 129 [arXiv:q-alg/9507006]. · Zbl 0858.57022 · doi:10.1007/BF00398315
[4] Baez, J. C. (1998). Spin foam models. Classical Quantum Gravity 15, 1827 [arXiv:gr-qc/9709052]. · Zbl 0932.83014 · doi:10.1088/0264-9381/15/7/004
[5] Barrett, J. W. (1998). The Classical evaluation of relativistic spin networks. Advances in Theoretical Mathematical Physics 2, 593 [arXiv:math.qa/9803063]. · Zbl 0947.83016
[6] Barrett, J. W. and Crane, L. (1998). Relativistic spin networks and quantum gravity. Journal of Mathematical Physics 39, 3296 [arXiv:gr-qc/9709028]. · Zbl 0967.83006 · doi:10.1063/1.532254
[7] Barrett, J. W. and Crane, L. (2000). A Lorentzian signature model for quantum general relativity. Classical Quantum Gravity 17, 3101 [arXiv:gr-qc/9904025]. · Zbl 0967.83007 · doi:10.1088/0264-9381/17/16/302
[8] Boulatov, D. V. (1992). A Model of three-dimensional lattice gravity. Modern Physics Letters A 7, 1629 [arXiv:hep-th/9202074]. · Zbl 1020.83539 · doi:10.1142/S0217732392001324
[9] De Pietri, R. and Petronio, C. (2000). Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. Journal of Mathematical Physics 41, 6671 [arXiv:gr-qc/0004045]. · Zbl 0971.81101 · doi:10.1063/1.1290053
[10] De Pietri, R. (2001). Matrix model formulation of four dimensional gravity. Nuclear Physics Proceedings Supplementary 94, 697. [arXiv:hep-lat/0011033]. · doi:10.1016/S0920-5632(01)00880-5
[11] De Pietri, R. and Freidel, L. (1999). so(4) Plebanski Action and Relativistic Spin Foam Model. Classical Quantum Gravity 16, 2187 [arXiv:gr-qc/9804071]. · Zbl 0942.83050 · doi:10.1088/0264-9381/16/7/303
[12] De Pietri, R., Freidel, L., Krasnov, K., and Rovelli, C. (2000). Barrett–Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nuclear Physics B 574, 785 [arXiv: hep-th/9907154]. · Zbl 0992.83017 · doi:10.1016/S0550-3213(00)00005-5
[13] Di Francesco, P., Ginsparg, P. H., and Zinn-Justin, J. (1995). 2-D Gravity and random matrices. Physical Report 254, 1 [arXiv:hep-th/9306153]. · doi:10.1016/0370-1573(94)00084-G
[14] Freidel, L. (2000). A Ponzano–Regge model of Lorentzian 3-dimensional gravity. Nuclear Physics Proceedings Supplementary 88, 237 [arXiv:gr-qc/0102098]. · Zbl 1273.83129 · doi:10.1016/S0920-5632(00)00775-1
[15] Freidel, L. and Krasnov, K. (1999). Spin foam models and the classical action principle. Advances in Theoretical Mathematical Physics 2, 1183 [arXiv:hep-th/9807092]. · Zbl 0948.83024
[16] Freidel, L. and Krasnov, K. (2000). Simple spin networks as Feynman graphs. Journal of Mathematical Physics 41, 1681 [arXiv:hep-th/9903192]. · Zbl 0977.83026 · doi:10.1063/1.533203
[17] Freidel, L. and Louapre, D. (2003). Diffeomorphisms and spin foam models. Nuclear Physics B 662, 279 [arXiv:gr-qc/0212001]. · Zbl 1040.83011 · doi:10.1016/S0550-3213(03)00306-7
[18] Freidel, L., Krasnov, K., and Puzio, R. (1999). BF description of higher-dimensional gravity theories. Advances in Theoretical Mathematical Physics 3, 1289 [arXiv:hep-th/9901069]. · Zbl 0997.83020
[19] Livine, R., Perez, A., and Rovelli, C. (2001) 2d manifold-independent spinfoam theory, arXiv: gr-qc/0102051. · Zbl 1047.83014
[20] Markopoulou, F. and Smolin, L. (1997). Causal evolution of spin networks. Nuclear Physics B 508, 409 [arXiv:gr-qc/9702025]. · Zbl 0925.83012 · doi:10.1016/S0550-3213(97)00488-4
[21] Mikovic, A. (2003). Spin foam models of Yang–Mills theory coupled to gravity. Classical Quantum Gravity 20, 239 [arXiv:gr-qc/0210051]. · Zbl 1014.83034 · doi:10.1088/0264-9381/20/1/317
[22] Okolow, A. and Lewandowski, J. (2003). Diffeomorphism covariant representations of the holonomy-flux *-algebra. Classical Quantum Gravity 20, 3543 [arXiv:gr-qc/0302059]. · Zbl 1045.83035 · doi:10.1088/0264-9381/20/16/302
[23] Ooguri, H. (1992). Topological lattice models in four-dimensions. Modern Physics Letters A 7, 2799 [arXiv:hep-th/9205090]. · Zbl 0968.57501 · doi:10.1142/S0217732392004171
[24] Oriti, D. and Pfeiffer, H. (2002). A spin foam model for pure gauge theory coupled to quantum gravity. Physical Review D 66, 124010 [arXiv:gr-qc/0207041]. · doi:10.1103/PhysRevD.66.124010
[25] Oriti, D. and Williams, R. M. (2001). Gluing 4-simplices: A derivation of the Barrett–Crane spin foam model for Euclidean quantum gravity. Physical Review D 63, 024022 [arXiv:gr-qc/0010031]. · doi:10.1103/PhysRevD.63.024022
[26] Perez, A. (2001). Finiteness of a spinfoam model for Euclidean quantum general relativity. Nuclear Physics B 599, 427 [arXiv:gr-qc/0011058]. · Zbl 0986.83033 · doi:10.1016/S0550-3213(01)00014-1
[27] Perez, A. (2003). Spin foam models for quantum gravity, Class. Quantum Gravity 20, R43 [arXiv: gr-qc/0301113]. · Zbl 1030.83002 · doi:10.1088/0264-9381/20/6/202
[28] Perez, A. and Rovelli, C. (2001). Observables in quantum gravity, arXiv:gr-qc/0104034. · Zbl 1227.83020
[29] Perez, A. and Rovelli, C. (2001). A spin foam model without bubble divergences. Nuclear Physics B 599, 255 [arXiv:gr-qc/0006107]. · Zbl 1097.83517 · doi:10.1016/S0550-3213(01)00030-X
[30] Ponzano, G. and Regge, T. (1968). Semiclassical limit of Racah coefficients. In Spectroscopic and Group Theoretical Methods in Physics, Racah Memorial Volume, F. Block et al. eds., North Holland, Amsterdam.
[31] Reisenberger, M. P. (1994). World sheet formulations of gauge theories and gravity, arXiv:gr-qc/9412035.
[32] Reisenberger, M. P. and Rovelli, C. (1997). *Sum over surfaces* form of loop quantum gravity. Physical Review D: Particles and Fields 56, 3490 [arXiv:gr-qc/9612035]. · doi:10.1103/PhysRevD.56.3490
[33] Reisenberger, M. P. and Rovelli, C. (2001). Spacetime as a Feynman diagram: The connection formulation. Classical and Quantum Gravity 18, 121 [arXiv:gr-qc/0002095]. · Zbl 0977.83015 · doi:10.1088/0264-9381/18/1/308
[34] Sahlmann, H. (2002). Some comments on the representation theory of the algebra underlying loop quantum gravity. arXiv:gr-qc/0207111.
[35] Sahlmann, H. and Thiemann, T. (2003). Irreducibility of the Ashtekar–Isham–Lewandowski representation. arXiv:gr-qc/0303074. · Zbl 1148.83008
[36] Thiemann, T. (1998). Quantum spin dynamics (QSD). Classical and Quantum Gravity 15, 839 [arXiv:gr-qc/9606089]. · Zbl 0956.83013 · doi:10.1088/0264-9381/15/4/011
[37] Turaev, V. G. and Viro, O. Y. (1992). State sum invariants of 3 manifolds and quantum 6j symbols. Topology 31, 865. · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[38] Witten, E. (1988). (2 + 1)-Dimensional Gravity as an exactly soluble system. Nuclear Physics B 311, 46. · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[39] Witten, E. (1991). On quantum gauge theories in two-dimensions. Communications in Mathematical Physics 141, 153. · Zbl 0762.53063 · doi:10.1007/BF02100009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.