×

zbMATH — the first resource for mathematics

Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces. (English) Zbl 1101.47053
Let \(E\) be a reflexive Banach space with a uniformly Gâteaux differentiable norm, \(C\) a closed convex subset of \(E\), \(f: C \to C\) a contraction, and \(T_1, \dots, T_N\) nonexpansive mappings from \(C\) into \(C\). Suppose that the set \(F\) of common fixed points of \(T_1, \dots, T_N\) is nonempty. The authors study the iterative process \(x_{n+1}=\lambda_{n+1} f(x_n)+ (1-\lambda_{n+1}) T_{n+1} x_n\), where \(x_0 \in C\), \(\{ \lambda_n \} \in (0,1)\) and \(T_n:= T_{n \text{ {mod}} N}\). Under appropriate conditions on \(\{ \lambda_n \}\), they prove that \(\{ x_n\}\) converges strongly to an element of \(F\).

MSC:
47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
49M05 Numerical methods based on necessary conditions
47J20 Variational and other types of inequalities involving nonlinear operators (general)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Barbu, V.; Precupanu, Th., Convexity and optimization in Banach spaces, (1978), Editura Academiei R. S. R. Bucharest · Zbl 0379.49010
[2] Bauschke, H.H., The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. math. anal. appl., 202, 150-159, (1996) · Zbl 0956.47024
[3] Browder, F.E., Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archiv. ration. mech. anal., 24, 82-90, (1967) · Zbl 0148.13601
[4] Cho, Y.J.; Kang, S.M.; Zhou, H.Y., Some control conditions on iterative methods, Commun. appl. nonlinear anal., 12, 2, 27-34, (2005) · Zbl 1088.47053
[5] Goebel, K.; Kirk, W.A., Topics in metric fixed point theory, () · Zbl 0708.47031
[6] Goebel, K.; Reich, S., Uniform convexity, hyperbolic geometry and nonexpansive mappings, (1984), Marcel Dekker New York, Basel · Zbl 0537.46001
[7] Ha, K.S.; Jung, J.S., Strong convergence theorems for accretive operators in Banach spaces, J. math. anal. appl., 147, 330-339, (1990) · Zbl 0712.47045
[8] Halpern, B., Fixed points of nonexpansive maps, Bull. amer. math. soc., 73, 957-961, (1967) · Zbl 0177.19101
[9] Jung, J.S., Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. math. anal. appl., 302, 509-520, (2005) · Zbl 1062.47069
[10] Jung, J.S.; Cho, Y.J.; Agarwal, R.P., Iterative schemes with some control conditions for a family of finite nonexpansive mappings in Banach space, Fixed point theory appl., 2005, 2, 125-135, (2005) · Zbl 1109.47056
[11] Jung, J.S.; Kim, T.H., Convergence of approximate sequences for compositions of nonexpansive mappings in Banach spaces, Bull. Korean math. soc., 34, 1, 93-102, (1997)
[12] Jung, J.S.; Morales, C., The Mann process for perturbed \(m\)-accretive operators in Banach spaces, Nonlinear anal., 46, 231-243, (2001) · Zbl 0997.47042
[13] Lions, P.L., Approximation de points fixes de contractions, C. R. acad. sci. Sér. A-B, Paris, 284, 1357-1359, (1977) · Zbl 0349.47046
[14] Liu, L.S., Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. math. anal. appl., 194, 114-125, (1995) · Zbl 0872.47031
[15] Moudafi, A., Viscosity approximation methods for fixed-points problems, J. math. anal. appl., 241, 46-55, (2000) · Zbl 0957.47039
[16] O’Hara, J.G.; Pillay, P.; Xu, H.K., Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear anal., 54, 1417-1426, (2003) · Zbl 1052.47049
[17] Reich, S., Product formulas, nonlinear semigroup and accretive operators, J. funct. anal., 36, 147-168, (1980) · Zbl 0437.47048
[18] Reich, S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. math. anal. appl., 75, 287-292, (1980) · Zbl 0437.47047
[19] Shioji, N.; Takahashi, W., Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. amer. math. soc., 125, 12, 3641-3645, (1997) · Zbl 0888.47034
[20] Takahashi, W.; Ueda, Y., On Reich’s strong convergence theorems for resolvents of accretive operators, J. math. anal. appl., 104, 546-553, (1984) · Zbl 0599.47084
[21] Wittmann, R., Approximation of fixed points of nonexpansive mappings, Arch. math., 59, 486-491, (1992) · Zbl 0797.47036
[22] Xu, H.K., Iterative algorithms for nonlinear operators, J. London math. soc., 66, 2, 240-256, (2002) · Zbl 1013.47032
[23] Xu, H.K., An iterative approach to quadratic optimization, J. optim. theory appl., 116, 3, 659-678, (2003) · Zbl 1043.90063
[24] Xu, H.K., Viscosity approximation methods for nonexpansive mappings, J. math. anal. appl., 298, 279-291, (2004) · Zbl 1061.47060
[25] H.Y. Zhou, L. Wei, Y.J. Cho, Strong convergence theorems on an iterative method for a family nonexpansive mappings in reflexive Banach spaces, Appl. Math. Comput., in press. · Zbl 1100.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.