×

zbMATH — the first resource for mathematics

Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. (English) Zbl 1101.82314
Summary: We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact single-spin space). Regarding regularity, we show that the RG map, defined on a suitable space of interactions (=formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension \(d\geqslant3\), these pathologies occur in a full neighborhood \(\{\beta>\beta_0, |h|<\varepsilon (\beta)\}\) of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension \(d\geqslant2\), the pathologies occur at low temperatures for arbitrary magnetic field strength. Pathologies may also occur in the critical region for Ising models in dimension \(d\geqslant4\). We discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems. In addition, we discuss critically the concept of Gibbs measure, which is at the heart of present-day classical statistical mechanics. We provide a careful, and, we hope, pedagogical, overview of the theory of Gibbsian measures as well as (the less familiar) non-Gibbsian measures, emphasizing the distinction between these two objects and the possible occurrence of the latter in different physical situations. We give a rather complete catalogue of the known examples of such occurrences. The main message of this paper is that, despite a well-established tradition, Gibbsiannessshould not be taken for granted.

MSC:
82B28 Renormalization group methods in equilibrium statistical mechanics
82-02 Research exposition (monographs, survey articles) pertaining to statistical mechanics
82B03 Foundations of equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system,Commun. Math. Phys. 73:83-94 (1980). · doi:10.1007/BF01942696
[2] M. Aizenman, Geometric analysis of? 4 4 fields and Ising models. Parts I and II,Commun. Math. Phys. 86:1-48 (1982). · Zbl 0533.58034 · doi:10.1007/BF01205659
[3] M. Aizenman, The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory,Commun. Math. Phys. 97:91-110 (1985). · Zbl 0573.60076 · doi:10.1007/BF01206180
[4] M. Aizenman, J. Bricmont, and J. L. Lebowitz, Percolation of the minority spins in high-dimensional Ising models,J. Stat. Phys. 49:859-865 (1987). · Zbl 0960.82503 · doi:10.1007/BF01009363
[5] M. Aizenman, J. T. Chayes, L. Chayes, J. Fr?hlich, and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces,Commun. Math. Phys. 92:19-69 (1983). · Zbl 0529.60099 · doi:10.1007/BF01206313
[6] M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1/?x?y?2 Ising and Potts models,J. Stat. Phys. 50:1-40 (1988). · Zbl 1084.82514 · doi:10.1007/BF01022985
[7] M. Aizenman and R. Fern?ndez, On the critical behavior of the magnetization in high-dimensional Ising models,J. Stat. Phys. 44:393-454 (1986). · Zbl 0629.60106 · doi:10.1007/BF01011304
[8] M. Aizenman and R. Graham, On the renormalized coupling constant and the susceptibility in? 4 4 field theory and the Ising model in four dimensions,Nucl. Phys. B 225[FS9]:261-288 (1983). · doi:10.1016/0550-3213(83)90053-6
[9] M. Aizenman and E. H. Lieb, The third law of thermodynamics and the degeneracy of the ground state for lattice systems,J. Stat. Phys. 24:279-297 (1981). · doi:10.1007/BF01007649
[10] M. P. Almeida and B. Gidas, A variational method for estimating the parameters of MRF from complete or incomplete data,Ann. Appl. Probab. 3:103-136 (1993). · Zbl 0771.60091 · doi:10.1214/aoap/1177005510
[11] D. J. Amit and L. Peliti, On dangerous irrelevant operators,Ann. Phys. 140:207-231 (1982). · doi:10.1016/0003-4916(82)90159-2
[12] P. W. Anderson and G. Yuval, Some numerical results on the Kondo problem and the inverse-square one-dimensional Ising model,J. Phys. C 4:607-620 (1971). · doi:10.1088/0022-3719/4/5/011
[13] P. W. Anderson, G. Yuval, and D. R. Hamann, Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models,Phys. Rev. B 1:4464-4473 (1970). · doi:10.1103/PhysRevB.1.4464
[14] C. Arag?o de Carvalho, S. Caracciolo, and J. Fr?hlich, Polymers and g?4 theory in four dimensions,Nucl. Phys. B 215[FS7]:209-248 (1983). · doi:10.1016/0550-3213(83)90213-4
[15] M. Asorey, J. G. Esteve, R. Fern?ndez, and J. Salas, Rigorous analysis of renormalization group pathologies in the 4-state clock model,Nucl. Phys. B 392:593-618 (1993). · doi:10.1016/0550-3213(93)90518-T
[16] M. B. Averintsev, Gibbs description of random fields whose conditional probabilities may vanish,Probl. Inform. Transmission 11:326-334 (1975).
[17] R. R. Bahadur,Some Limit Theorems in Statistics (SIAM, Philadelphia, Pennsylvania, 1971). · Zbl 0257.62015
[18] G. A. Baker and S. Krinsky, Renormalization group structure of translation invariant ferromagnets,J. Math. Phys. 18:590-607 (1977). · doi:10.1063/1.523341
[19] T. Balaban, Ultraviolet stability in field theory. The? 3 4 model, inScaling and Self-Similarity in Physics, J. Fr?hlich, ed. (Birkh?user, Basel, 1983).
[20] T. Balaban, Large field renormalization. II. Localization, exponentiation and bounds for theR operation,Commun. Math. Phys. 122:355-392 (1989). · Zbl 0704.58060 · doi:10.1007/BF01238433
[21] R. Balian,From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (Springer-Verlag, Berlin, 1991). · Zbl 1131.82300
[22] A. G. Basuev, Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states,Theor. Math. Phys. 58:171-182 (1984). · doi:10.1007/BF01017924
[23] A. G. Basuev, Hamiltonian of the phase separation border and phase transitions of the first kind. I,Theor. Math. Phys. 64:716-734 (1985). · doi:10.1007/BF01017040
[24] A. G. Basuev, Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases,Theor. Math. Phys. 72:861-871 (1987). · doi:10.1007/BF01017111
[25] G. A. Battle and L. Rosen, The FKG inequality for the Yukawa2 quantum field theory,J. Stat. Phys. 22:123-192 (1980). · doi:10.1007/BF01008048
[26] H. Bauer,Probability Theory and Elements of Measure Theory (Holt, Rinehart and Winston, New York, 1972). · Zbl 0243.60004
[27] R. T. Baumel, On spontaneously broken symmetry in the P(?)2 model quantum field theory, Ph.D. thesis, Princeton University (June 1979).
[28] T. L. Bell and K. G. Wilson, Finite-lattice approximations to renormalization groups,Phys. Rev. B 11:3431-3444 (1975). · doi:10.1103/PhysRevB.11.3431
[29] G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicol?, E. Olivieri, E. Presutti, and E. Scacciatelli, Ultraviolet stability in Euclidean scalar field theories,Commun. Math. Phys. 71:95-130 (1980). · Zbl 0427.60098 · doi:10.1007/BF01197916
[30] P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968). · Zbl 0172.21201
[31] P. Billingsley,Probability and Measure (Wiley, New York, 1979). · Zbl 0411.60001
[32] M. J. Bissett, A perturbation-theoretic derivation of Wilson’s ?incomplete integration? theory,J. Phys. C 6:3061-3070 (1973). · doi:10.1088/0022-3719/6/21/010
[33] P. M. Bleher and P. Major, Critical phenomena and universal exponents in statistical physics. On Dyson’s hierarchical model,Ann. Prob. 15:431-477 (1987). · Zbl 0628.60101 · doi:10.1214/aop/1176992155
[34] H. W. J. Bl?te and R. H. Swendsen, First-order phase transitions and the three-state Potts model,Phys. Rev. Lett. 43:799-802 (1979). · doi:10.1103/PhysRevLett.43.799
[35] E. Bolthausen, Markov process large deviations in the ?-topology,Stoch. Proc. Appl. 25:95-108 (1987). · Zbl 0625.60026 · doi:10.1016/0304-4149(87)90192-X
[36] C. Borgs and J. Z. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics,Commun. Math. Phys. 123:305-328 (1989). · Zbl 0668.60092 · doi:10.1007/BF01238860
[37] C. Borgs and R. Koteck?, A rigorous theory of finite-size scaling at first-order phase transitions,J. Stat. Phys. 61:79-119 (1990). · doi:10.1007/BF01013955
[38] H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures, inFunctional Integration and its Applications, A. M. Arthurs, ed. (Clarendon Press, Oxford, 1975). · Zbl 0348.26011
[39] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Pr?kopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,J. Funct. Anal. 22:366-389 (1976). · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[40] H. J. Brascamp, E. H. Lieb, and J. L. Lebowitz, The statistical mechanics of anharmonic lattices,Bull. Int. Statist. Inst. 46 (Book 1):393-404 (1975). · Zbl 0357.60051
[41] O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics II (Springer-Verlag, Berlin, 1981). · Zbl 0463.46052
[42] J. Bricmont, J.-R. Fontaine, and L. J. Landau, On the uniqueness of the equilibrium state for plane rotators,Commun. Math. Phys. 56:281-290 (1977). · doi:10.1007/BF01614213
[43] J. Bricmont, J.-R. Fontaine, J. L. Lebowitz, and T. Spencer, Lattice systems with a continuous symmetry I. Perturbation theory for unbounded spins,Commun. Math. Phys. 78:281-302 (1980). · doi:10.1007/BF01942373
[44] J. Bricmont and A. Kupiainen, Lower critical dimension for the random field Ising model,Phys. Rev. Lett. 59:1829-1832 (1987). · doi:10.1103/PhysRevLett.59.1829
[45] J. Bricmont and A. Kupiainen, Phase transition in the 3d random field Ising model,Commun. Math. Phys. 116:539-572 (1988). · Zbl 1086.82573 · doi:10.1007/BF01224901
[46] J. Bricmont, K. Kuroda, and J. L. Lebowitz, The structure of Gibbs states and phase coexistence for non-symmetric continuum Widom-Rowlinson models,Z. Wahrsch. verw. Geb. 67:121-138 (1984). · Zbl 0535.60098 · doi:10.1007/BF00535264
[47] J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory,Commun. Math. Phys. 101:501-538 (1985). · Zbl 0573.60098 · doi:10.1007/BF01210743
[48] J. Bricmont and J. Slawny, First order phase transitions and perturbation theory, inStatistical Mechanics and Field Theory: Mathematical Aspects (Proceedings, Groningen 1985, Lecture Notes in Physics #257, T. C. Dorlas, N. M. Hugenholtz, and M. Winnink, eds. (Springer-Verlag, Berlin, 1986). · Zbl 0614.46070
[49] J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states,J. Stat. Phys. 54:89-161 (1989). · doi:10.1007/BF01023475
[50] D. A. Browne and P. Kleban, Equilibrium statistical mechanics for kinetic phase transitions,Phys. Rev. A 40:1615-1626 (1989). · doi:10.1103/PhysRevA.40.1615
[51] A. D. Bruce and A. Aharony, Coupled order parameters, symmetry-breaking irrelevant scaling fields, and tetracritical points,Phys. Rev. B 11:478-499 (1975). · doi:10.1103/PhysRevB.11.478
[52] W. Bryc, On the large deviation principle for stationary weakly dependent random fields,Ann. Prob. 20:1004-1030 (1992). · Zbl 0756.60028 · doi:10.1214/aop/1176989815
[53] D. Brydges and T. Spencer, Self-avoiding walks in 5 or more dimensions,Commun. Math. Phys. 97:125-148 (1985). · Zbl 0575.60099 · doi:10.1007/BF01206182
[54] D. Brydges and H.-T. Yau, Grad? perturbations of massless Gaussian fields,Commun. Math. Phys. 129:351-392 (1990). · Zbl 0705.60101 · doi:10.1007/BF02096987
[55] T. W. Burkhardt, Random-field singularities in position-space renormalization-group transformations,Phys. Rev. Lett. 43:1629-1631 (1979). · doi:10.1103/PhysRevLett.43.1629
[56] T. W. Burkhardt and J. M. J. van Leeuwen, Progress and problems in real-space renormalization, inReal-Space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer-Verlag, Berlin, 1982).
[57] C. Cammarota, The large block spin interaction,Nuovo Cim. B 96:1-16 (1986). · doi:10.1007/BF02725573
[58] J. L. Cardy, One-dimensional models with 1/r 2 interactions,J. Phys. A 14:1407-1415 (1981). · doi:10.1088/0305-4470/14/6/017
[59] E. A. Carlen and A. Soffer, Entropy production by block spin summation and central limit theorems,Commun. Math. Phys. 140:339-371 (1992). · Zbl 0734.60024 · doi:10.1007/BF02099503
[60] M. Cassandro and E. Olivieri, Renormalization group and analyticity in one dimension: A proof of Dobrushin’s theorem,Commun. Math. Phys. 80:255-269 (1981). · doi:10.1007/BF01213013
[61] M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti, Existence and uniqueness of DLR measures for unbounded spin systems,Z. Wahrsch. verw. Geb. 41:313-334 (1978). · Zbl 0369.60116 · doi:10.1007/BF00533602
[62] N. N. ?encov,Statistical Decision Rules and Optimal Inference (American Mathematical Society, Providence, Rhode Island, 1982).
[63] S. Chowla and M. Cowles, Remarks on equations related to Fermat’s last theorem, inNumber Theory Related to Fermat’s Last Theorem, N. Koblitz, ed. (Birkh?user, Basel, 1982). · Zbl 0508.10028
[64] D. V. Chudnovsky and G. V. Chudnovsky, Transcendental methods and theta-functions, inProceedings of Symposia in Pure Mathematics, Vol. 49, Part 2 (American Mathematical Society, Providence, Rhode Island, 1989), pp. 167-232. · Zbl 0679.10026
[65] F. S. Cohen and D. B. Cooper, Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian random fields,IEEE Trans. Pattern Anal. Machine Intell. 9:195-219 (1987). · doi:10.1109/TPAMI.1987.4767895
[66] J. E. Cohen, Y. Iwasa, G. Rautu, M. B. Ruskai, E. Seneta, and G. Zbaganu, Relative entropy under mappings by stochastic matrices,Lin. Alg. Appl. 179:211-235 (1993). · Zbl 0764.60068 · doi:10.1016/0024-3795(93)90331-H
[67] F. Comets, Grandes d?viations pour des champs de Gibbs sur ?d,C. R. Acad. Sci. Paris I 303:511-513 (1986). · Zbl 0606.60035
[68] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).
[69] I. Csisz?r, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizit?t von Markoffschen Ketten,Magyar Tud. Akad. Mat. Kutat? Int. K?zl. 8:85-108 (1963) [see alsoMath. Rev. 29, #1671 (1965)]. · Zbl 0124.08703
[70] I. Csisz?r,I-divergence geometry of probability distributions and minimization problems,Ann. Prob. 3:146-158 (1975). · Zbl 0318.60013 · doi:10.1214/aop/1176996454
[71] I. Csisz?r, Sanov property, generalized I-projection and a conditional limit theorem,Ann. Prob. 12:768-793 (1984). · Zbl 0544.60011 · doi:10.1214/aop/1176993227
[72] H. A. M. Dani?ls and A. C. D. van Enter, Differentiability properties of the pressure in lattice systems,Commun. Math. Phys. 71:65-76 (1980). · Zbl 0422.46059 · doi:10.1007/BF01230087
[73] J. de Coninck and C. M. Newman, The magnetization-energy scaling limit in high dimension,J. Stat. Phys. 59:1451-1467 (1990). · Zbl 0718.60116 · doi:10.1007/BF01334759
[74] K. Decker, A. Hasenfratz, and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (II). Monte Carlo renormalization group results,Nucl. Phys. B 295[FS21]:21-35 (1988). · Zbl 0957.81559 · doi:10.1016/0550-3213(88)90225-8
[75] C. Dellacherie and P.-A. Meyer,Probabilities and Potential (North-Holland, Amsterdam, 1978). · Zbl 0494.60001
[76] P. D?nes, ?ber die Diophantische Gleichungx l +y l =cz l ,Acta Math. 88:241-251 (1952). · Zbl 0048.27503 · doi:10.1007/BF02392133
[77] J.-D. Deuschel and D. W. Stroock,Large Deviations (Academic Press, San Diego, 1989).
[78] L. E. Dickson,History of the Theory of Numbers, Vol. II (Chelsea, New York, 1971).
[79] E. L. Dinaburg and A. E. Mazel, Low-temperature phase transitions in ANNNI model, inProceedings 8th International Congress on Mathematical Physics, M. Mebkhout and R. S?n?or, eds. (World Scientific, Singapore, 1987).
[80] E. L. Dinaburg and A. E. Mazel, Analysis of low-temperature phase diagram of the microemulsion model,Commun. Math. Phys. 125:25-42 (1989). · doi:10.1007/BF01217767
[81] E. L. Dinaburg, A. E. Mazel, and Ya. G. Sinai, ANNNI model and contour models with interactions, inMathematical Physics Reviews, Soviet Science Reviews Section C, Vol. 6, S. P. Novikov, ed. (Gordon and Breach, New York, 1986).
[82] E. L. Dinaburg and Ya. G. Sinai, An analysis of ANNNI model by Peierl’s [sic] contour method,Commun. Math. Phys. 98:119-144 (1985). · Zbl 1223.82020 · doi:10.1007/BF01211047
[83] P. G. L. Dirichlet, M?moire sur l’impossibilit? de quelques ?quations ind?termin?es du cinqui?me degr?,J. Reine Angew. Math. (Crelle’s J.) 3:354-376 (1828). · ERAM 003.0128cj · doi:10.1515/crll.1828.3.354
[84] R. L. Dobrushin, Existence of a phase transition in the two-dimensional and three-dimensional Ising models,Sov. Phys. Doklady 10:111-113 (1965).
[85] R. L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity,Theor. Prob. Appl. 13:197-224 (1968). · Zbl 0184.40403 · doi:10.1137/1113026
[86] R. L. Dobrushin, The problem of uniqueness of a Gibbs random field and the problem of phase transitions,Funct. Anal. Appl. 2:302-312 (1968). · Zbl 0192.61702 · doi:10.1007/BF01075682
[87] R. L. Dobrushin, Gibbs states describing coexistence of phases for a three-dimensional Ising model,Theor. Prob. Appl. 17:582-600 (1972). · Zbl 0275.60119 · doi:10.1137/1117073
[88] R. L. Dobrushin, Gaussian random fields?Gibbsian point of view, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 119-152. · Zbl 0499.60046
[89] R. L. Dobrushin, J. Kolafa, and S. B. Shlosman, Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof),Commun. Math. Phys. 102:89-103 (1985). · doi:10.1007/BF01208821
[90] R. L. Dobrushin and M. R. Martirosyan, Nonfinite perturbations of Gibbs fields,Theor. Math. Phys. 74:10-20 (1988). · Zbl 1268.60071 · doi:10.1007/BF01018206
[91] R. L. Dobrushin and M. R. Martirosyan, Possibility of high-temperature phase transitions due to the many-particle nature of the potential,Theor. Math. Phys. 75:443-448 (1988). · doi:10.1007/BF01017482
[92] R. L. Dobrushin and E. A. Pecherski, Uniqueness condition for finitely dependent random fields, inRandom Fields. Esztergom (Hungary) 1979, Vol. I (North-Holland, Amsterdam, 1981).
[93] R. L. Dobrushin and E. A. Pecherski, A criterion for the uniqueness of Gibbsian fields in the non-compact case, inProbability Theory and Mathematical Statistics, Lecture Notes in Mathematics #1021, (Springer-Verlag, Berlin, 1983), pp. 97-110.
[94] R. L. Dobrushin and S. B. Shlosman, Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetries, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 199-210.
[95] R. L. Dobrushin and S. B. Shlosman, Completely analytic random fields, inStatistical Mechanics and Dynamical Systems, J. Fritz, A. Jaffe and D. Sz?sz, eds. (Birkh?user, Basel, 1985). · Zbl 0569.46043
[96] R. L. Dobrushin and S. B. Shlosman, Constructive criterion for the uniqueness of a Gibbs field, inStatistical Mechanics and Dynamical Systems, J. Fritz, A. Jaffe and D. Sz?sz, eds. (Birkh?user, Basel, 1985). · Zbl 0569.46042
[97] R. L. Dobrushin and S. B. Shlosman, The problem of translation invariance of Gibbs states at low temperatures, inMathematical Physics Reviews, Soviet Science Reviews Section C, Vol. 5, S. P. Novikov, ed. (Gordon and Breach, New York, 1985). · Zbl 0613.76010
[98] R. L. Dobrushin and S. B. Shlosman, Completely analytical interactions: Constructive description,J. Stat. Phys. 46:983-1014 (1987). · Zbl 0683.60080 · doi:10.1007/BF01011153
[99] R. L. Dobrushin and M. Zahradnik, Phase diagrams for continuous spin systems, inMathematical Problems of Statistical Physics and Dynamics, R. L. Dobrushin, ed. (Reidel, Dordrecht, 1985).
[100] Y. Domar, On the Diophantine equation ?Ax n ?By n ?=1,Math. Scand. 2:29-32 (1954). · Zbl 0056.03602
[101] M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I,Commun. Pure Appl. Math. 28:1-47 (1975). · Zbl 0323.60069 · doi:10.1002/cpa.3160280102
[102] M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, II,Commun. Pure Appl. Math. 28:279-301 (1975). · Zbl 0348.60031 · doi:10.1002/cpa.3160280206
[103] M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III,Commun. Pure Appl. Math. 28:389-461 (1976). · Zbl 0348.60032 · doi:10.1002/cpa.3160290405
[104] M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, IV,Commun. Pure Appl. Math. 36:183-212 (1983). · Zbl 0512.60068 · doi:10.1002/cpa.3160360204
[105] T. C. Dorlas and A. C. D. van Enter, Non-Gibbsian limit for large-block majority-spin transformations,J. Stat. Phys. 55:171-181 (1989). · Zbl 0714.60092 · doi:10.1007/BF01042596
[106] N. Dunford and J. T. Schwartz,Linear Operators (Interscience, New York, 1958).
[107] F. Dunlop, Correlation inequalities for multicomponent rotators,Commun. Math. Phys. 49:247-256 (1976). · doi:10.1007/BF01608730
[108] F. Dunlop and C. M. Newman, Multicomponent field theories and classical rotators,Commun. Math. Phys. 44:223-235 (1975). · doi:10.1007/BF01609827
[109] E. B. Dynkin, Sufficient statistics and extreme points,Ann. Prob. 6:705-730 (1978). · Zbl 0403.62009 · doi:10.1214/aop/1176995424
[110] R. E. Edwards,Fourier Series: A Modern Introduction, Vol. I (Holt, Rinehart and Winston, New York, 1967). · Zbl 0152.25902
[111] R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm,Phys. Rev. D 38:2009-2012 (1988). · doi:10.1103/PhysRevD.38.2009
[112] R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer-Verlag, Berlin, 1985). · Zbl 0566.60097
[113] J. H. Evertse,Upper Bounds for the Numbers of Solutions of Diophantine Equations (Mathematisch Centrum, Amsterdam, 1983). · Zbl 0517.10016
[114] G. Felder and J. Fr?hlich, Intersection properties of simple random walks: A renormalization group approach,Commun. Math. Phys. 97:111-124 (1985). · Zbl 0573.60065 · doi:10.1007/BF01206181
[115] B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. III. Correlation functions,Ann. Phys. 58:281-300 (1970). · doi:10.1016/0003-4916(70)90246-0
[116] B. U. Felderhof and M. E. Fisher, Phase transitions in one-dimensional cluster-interaction fluids. II. Simple logarithmic model,Ann. Phys. 58:268-280 (1970). · doi:10.1016/0003-4916(70)90245-9
[117] R. Fern?ndez, J. Fr?hlich, and A. D. Sokal,Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).
[118] M. E. Fisher, On discontinuity of the pressure,Commun. Math. Phys. 26:6-14 (1972). · Zbl 0241.76010 · doi:10.1007/BF01877543
[119] M. E. Fisher, Crossover effects and operator expansions, inRenormalization Group in Critical Phenomena and Quantum Field Theory: Proceedings of a Conference, J. D. Gunton and M. S. Green, eds. (Temple University, Philadelphia, Pennsylvania, 1974), pp. 65-68.
[120] M. E. Fisher, Scaling, universality and renormalization group theory, inCritical Phenomena (Stellenbosch 1982), Lecture Notes in Physics # 186, F. J. W. Hahne, ed. (Springer-Verlag, Berlin, 1983), pp. 1-139.
[121] M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems,Phys. Rev. B 26:2507-2513 (1982). · doi:10.1103/PhysRevB.26.2507
[122] M. E. Fisher and B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. IA. Thermodynamics,Ann. Phys. 58:176-216 (1970). · doi:10.1016/0003-4916(70)90243-5
[123] M. E. Fisher and B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. IB. Critical behavior,Ann. Phys. 58:217-267 (1970). · doi:10.1016/0003-4916(70)90244-7
[124] M. E. Fisher and S. Sarbach, Nonuniversality of tricritical behavior,Phys. Rev. Lett. 41:1127-1130 (1978). · doi:10.1103/PhysRevLett.41.1127
[125] H. F?llmer, On entropy and information gain in random fields,Z. Wahrsch. verw. Geb. 26:207-217 (1973). · Zbl 0258.60029 · doi:10.1007/BF00532723
[126] H. F?llmer, Random fields and diffusion processes, in?cole d’?t? de Probabilit?s de Saint-Flour XV-XVII, Lecture Notes in Mathematics #1362, P. Hennequin, ed. (Springer-Verlag, Berlin, 1988).
[127] H. F?llmer and S. Orey, Large deviations for the empirical field of a Gibbs measure,Ann. Prob. 16:961-977 (1988). · Zbl 0648.60028 · doi:10.1214/aop/1176991671
[128] C. M. Fortuin, On the random cluster model. III. The simple random cluster model,Physica 59:545-570 (1972). · doi:10.1016/0031-8914(72)90087-0
[129] C. M. Fortuin, J. Ginibre, and P. W. Kasteleyn, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89-103 (1971). · Zbl 0346.06011 · doi:10.1007/BF01651330
[130] C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models,Physica 57:536-564 (1972). · doi:10.1016/0031-8914(72)90045-6
[131] Z. Friedman and J. Felsteiner, Kadanoff block transformation by the Monte-Carlo technique,Phys. Rev. B 15:5317-5319 (1977). · doi:10.1103/PhysRevB.15.5317
[132] A. Frigessi and M. Piccioni, Parameter estimation for two-dimensional Ising fields corrupted by noise,Stoch. Proc. Appl. 34:297-311 (1990). · Zbl 0702.62096 · doi:10.1016/0304-4149(90)90020-S
[133] J. Fr?hlich, On the triviality of?? 4 4 theories and the approach to the critical point in d ? 4 dimensions,Nucl. Phys. B 200[FS4]:281-296 (1982). · doi:10.1016/0550-3213(82)90088-8
[134] J. Fr?hlich, Mathematical aspects of the physics of disordered systems, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), Part II, pp. 725-893.
[135] J. Fr?hlich, R. B. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions,J. Stat. Phys. 22:297-347 (1980). · doi:10.1007/BF01014646
[136] J. Fr?hlich and C. E. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems,Commun. Math. Phys. 81:277-298 (1981). · doi:10.1007/BF01208901
[137] J. Fr?hlich and T. Spencer, The Kosterlitz-Thouless phase transition in the two-dimensional plane rotator and Coulomb gas,Phys. Rev. Lett. 46:1006-1009 (1981). · doi:10.1103/PhysRevLett.46.1006
[138] J. Fr?hlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas,Commun. Math. Phys. 81:527-602 (1981). · doi:10.1007/BF01208273
[139] J. Fr?hlich and T. Spencer, Phase diagrams and critical properties of (classical) Coulomb systems, inRigorous Atomic and Molecular Physics, G. Velo and A. S. Wightman, eds. (Plenum Press, New York, 1981), pp. 327-370.
[140] J. Fr?hlich and T. Spencer, The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy,Commun. Math. Phys. 84:87-101 (1982). · Zbl 1110.82302 · doi:10.1007/BF01208373
[141] J. Fr?hlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy,Commun. Math. Phys. 88:151-184 (1983). · Zbl 0519.60066 · doi:10.1007/BF01209475
[142] G. Gallavotti and S. Miracle-Sole, Statistical mechanics of lattice systems,Commun. Math. Phys. 5:317-324 (1967). · Zbl 0154.46501 · doi:10.1007/BF01646445
[143] G. Gallavotti and S. Miracle-Sole, Correlation functions of lattice systems,Commun. Math. Phys. 7:274-288 (1968). · doi:10.1007/BF01646661
[144] G. Gallavotti and S. Miracle-Sole, Equilibrium states of the Ising model in the two-phase region,Phys. Rev. B 5:2555-2559 (1972). · doi:10.1103/PhysRevB.5.2555
[145] J. M. Gandhi, On Fermat’s last theorem,Am. Math. Monthly 71:998-1006 (1964). · Zbl 0125.02401 · doi:10.2307/2311916
[146] P. G?nssler, Compactness and sequential compactness in spaces of measures,Z. Wahrsch. verw. Geb. 17:124-146 (1971). · Zbl 0202.04904 · doi:10.1007/BF00538864
[147] P. L. Garrido, A. Labarta, and J. Marro, Stationary nonequilibrium states in the Ising model with locally competing temperatures,J. Stat. Phys. 49:551-568 (1987). · doi:10.1007/BF01009348
[148] K. Gawedzki, Rigorous renormalization group at work,Physica 140A:78-84 (1986).
[149] K. Gawedzki, R. Koteck?, and A. Kupiainen, Coarse graining approach to first order phase transitions,J. Stat. Phys. 47:701-724 (1987). · doi:10.1007/BF01206154
[150] K. Gawedzki and A. Kupiainen, A rigorous block spin approach to massless lattice theories,Commun. Math. Phys. 77:31-64 (1980). · doi:10.1007/BF01205038
[151] K. Gawedzki and A. Kupiainen, Block spin renormalization group for dipole gas and??)4,Ann. Phys. 147:198-243 (1983). · doi:10.1016/0003-4916(83)90071-4
[152] K. Gawedzki and A. Kupiainen, Gross-Neveu model through convergent perturbation expansions,Commun. Math. Phys. 102:1-30 (1985). · doi:10.1007/BF01208817
[153] K. Gawedzki and A. Kupiainen, Massless lattice? 4 4 theory: Rigorous control of a renormalizable asymptotically free model,Commun. Math. Phys. 99:197-252 (1985). · doi:10.1007/BF01212281
[154] K. Gawedzki and A. Kupiainen, Asymptotic freedom beyond perturbation theory, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), Part I, pp. 185-293.
[155] D. Geman, Random fields and inverse problems in imaging, inEcole d’Et? de Probabilit?s de Saint-Flour XVIII-1988, Lecture Notes in Mathematics #1427, (Springer-Verlag, Berlin, 1990), pp. 116-193.
[156] S. Geman, Hidden Markov models for image analysis, Lecture at Istituto per le Applicazioni del Calcolo, Rome (July 1990).
[157] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,IEEE Trans. Pattern Anal. Machine Intell. 6:721-741 (1984). · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[158] H.-O. Georgii, Large deviations and maximum entropy principle for interacting random fields on ?d,Ann. Prob., to appear. · Zbl 0790.60031
[159] H.-O. Georgii, Two remarks on extremal equilibrium states,Commun. Math. Phys. 32:107-118 (1973). · doi:10.1007/BF01645650
[160] H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988). · Zbl 0657.60122
[161] B. Gidas, A renormalization group approach to image processing problems,IEEE Trans. Pattern Anal. Mach. Intell. 11:164-180 (1989). · Zbl 0709.68606 · doi:10.1109/34.16712
[162] J. Glimm and A. Jaffe, Positivity of the? 3 4 Hamiltonian,Fortschr. Physik 21:327-376 (1973). · doi:10.1002/prop.19730210702
[163] J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View (Springer-Verlag, Berlin, 1981). · Zbl 0461.46051
[164] S. Goldstein, A note on specifications,Z. Wahrsch. verw. Geb. 46:45-51 (1978). · Zbl 0405.60089 · doi:10.1007/BF00535686
[165] S. Goldstein, R. Kuik, J. L. Lebowitz, and C. Maes, From PCA’s to equilibrium systems and back,Commun. Math. Phys. 125:71-79 (1989). · Zbl 0683.68045 · doi:10.1007/BF01217769
[166] A. Gonz?lez-Arroyo, M. Okawa, and Y. Shimizu, Monte Carlo renormalization-group study of the four-dimensional Z2 gauge theory,Phys. Rev. Lett. 60:487-490 (1988). · doi:10.1103/PhysRevLett.60.487
[167] A. Gonz?lez-Arroyo and J. Salas, Computing the couplings of Ising systems from Schwinger-Dyson equations,Phys. Lett. B 214:418-424 (1988). · doi:10.1016/0370-2693(88)91387-1
[168] A. Gonz?lez-Arroyo and J. Salas, Renormalization group flow of the two-dimensional Ising model atT< T c ,Phys. Lett. B 261:415-423 (1991). · doi:10.1016/0370-2693(91)90450-5
[169] M. G?pfert and G. Mack, Proof of confinement of static quarks in 3-dimensionalU(1) lattice gauge theory for all values of the coupling constant,Commun. Math. Phys. 82:545-606 (1982). · doi:10.1007/BF01961240
[170] F. P. Greenleaf,Invariant Means on Topological Groups (Van Nostrand-Reinhold, New York, 1969). · Zbl 0174.19001
[171] R. B. Griffiths, Peierls’ proof of spontaneous magnetization of a two-dimensional Ising ferromagnet,Phys. Rev. A136:437-439 (1964). · Zbl 0129.23205
[172] R. B. Griffiths, Rigorous results and theorems, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).
[173] R. B. Griffiths, Phase diagrams and higher-order critical points,Phys. Rev. B 12:345-355 (1975). · doi:10.1103/PhysRevB.12.345
[174] R. B. Griffiths, Mathematical properties of renormalization-group transformations,Physica 106A:59-69 (1981).
[175] R. B. Griffiths and P. A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems,Phys. Rev. Lett. 41:917-920 (1978). · doi:10.1103/PhysRevLett.41.917
[176] R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization-group transformations,J. Stat. Phys. 20:499-545 (1979). · doi:10.1007/BF01012897
[177] R. B. Griffiths and D. Ruelle, Strict convexity (?continuity?) of the pressure in lattice systems,Commun. Math. Phys. 23:169-175 (1971). · doi:10.1007/BF01877738
[178] C. Grillenberger and U. Krengel, On the spatial constant of superadditive set functions in ? d , inErgodic Theory and Related Topics, H. Michel, ed. (Akademie-Verlag, Berlin, 1982). · Zbl 0512.52012
[179] P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, Large deviation theorems for empirical probability measures,Ann. Prob. 7:553-586 (1979). · Zbl 0425.60021 · doi:10.1214/aop/1176994984
[180] L. Gross, Absence of second-order phase transitions in the Dobrushin uniqueness region,J. Stat. Phys. 25:57-72 (1981). · doi:10.1007/BF01008479
[181] L. Gross, Thermodynamics, statistical mechanics, and random fields, inEcole d’Et? de Probabilit?s de Saint-Flour X-1980, Lecture Notes in Mathematics #929, (Springer-Verlag, Berlin, 1982).
[182] C. Gruber and A. S?t?, Phase diagrams of lattice systems of residual entropy,J. Stat. Phys. 42:113-142 (1988). · Zbl 1083.82514 · doi:10.1007/BF01016407
[183] P. Hall and C. C. Heyde,Martingale Limit Theory and its Application (Academic Press, New York, 1980). · Zbl 0462.60045
[184] T. Hara, A rigorous control of logarithmic corrections in four-dimensional? 4 spin systems. I. Trajectory of effective Hamiltonians,J. Stat. Phys. 47:57-98 (1987). · doi:10.1007/BF01009035
[185] T. Hara, Mean-field critical behaviour for correlation length for percolation in high dimensions,Prob. Theory Related Fields 86:337-385 (1990). · Zbl 0685.60102 · doi:10.1007/BF01208256
[186] T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions,Commun. Math. Phys. 128:333-391 (1990). · Zbl 0698.60100 · doi:10.1007/BF02108785
[187] T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animals,J. Stat. Phys. 59:1469-1510 (1990). · Zbl 0718.60117 · doi:10.1007/BF01334760
[188] T. Hara and G. Slade, Critical behaviour of self-avoiding walk in five or more dimensions,Bull. Am. Math. Soc. 25:417-423 (1991). · Zbl 0728.60103 · doi:10.1090/S0273-0979-1991-16085-4
[189] T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions,Rev. Math. Phys. 4:235-327 (1992). · Zbl 0755.60054 · doi:10.1142/S0129055X9200008X
[190] T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour,Commun. Math. Phys. 147:101-136 (1992). · Zbl 0755.60053 · doi:10.1007/BF02099530
[191] T. Hara and H. Tasaki, A rigorous control of logarithmic corrections in four-dimensional? 4 spin systems. II. Critical behavior of susceptibility and correlation length,J. Stat. Phys. 47:99-121 (1987). · doi:10.1007/BF01009036
[192] A. Hasenfratz and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (I),Nucl. Phys. B 295[FS21]:1-20 (1988). · Zbl 0957.81559 · doi:10.1016/0550-3213(88)90224-6
[193] A. Hasenfratz, P. Hasenfratz, U. Heller, and F. Karsch, Improved Monte Carlo renormalization group methods,Phys. Lett. B 140:76-82 (1984). · doi:10.1016/0370-2693(84)91051-7
[194] T. Heath,A History of Greek Mathematics (Clarendon Press, Oxford, 1921), Vol. I, pp. 91-93, 380. · JFM 48.0046.01
[195] Y. Higuchi, On the absence of non-translationally invariant Gibbs states for the two-dimensional Ising system, inRandom Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (Esztergom 1979), J. Fritz, J. L. Lebowitz, and D. Sz?sz, eds. (North-Holland, Amsterdam, 1981).
[196] Y. Higuchi and R. Lang, On the convergence of the Kadanoff transformation towards trivial fixed points,Z. Wahrsch. verw. Geb. 58:109-123 (1981). · Zbl 0465.60012 · doi:10.1007/BF00536199
[197] P. Holick?, R. Koteck?, and M. Zahradn?k, Rigid interfaces for lattice models at low temperatures,J. Stat. Phys. 50:755-812 (1988). · Zbl 1084.82517 · doi:10.1007/BF01026500
[198] W. Holsztynski and J. Slawny, Peierls condition and the number of ground states,Commun. Math. Phys. 61:177-190 (1978). · doi:10.1007/BF01609493
[199] P. J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions, inProceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, L. M. Le Cam and J. Neyman, eds. (University of California Press, Berkeley, 1967), Vol. I, pp. 221-233.
[200] O. Hud?k, On the character of peculiarities in the position-space renormalization-group transformations,Phys. Lett. A 73:273-274 (1979). · doi:10.1016/0375-9601(79)90531-0
[201] N. M. Hugenholtz,C *-algebras and statistical mechanics, inProceedings of Symposia in Pure Mathematics, Volume 38, Part 2 (American Mathematical Society, Providence, Rhode Island, 1982), pp. 407-465.
[202] N. M. Hugenholtz, On the inverse problem in statistical mechanics,Commun. Math. Phys. 85:27-38 (1982). · Zbl 0525.46037 · doi:10.1007/BF02029131
[203] D. Iagolnitzer and B. Souillard, Random fields and limit theorems, inRandom Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz, and D. Sz?sz, eds. (North-Holland, Amsterdam, 1981), Vol. II, pp. 573-591.
[204] I. A. Ibragimov and Yu. V. Linnik,Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971).
[205] J. Z. Imbrie, Phase diagrams and cluster expansions for low temperatureP(?)2 models. I. The phase diagram,Commun. Math. Phys. 82:261-304 (1981). · doi:10.1007/BF02099920
[206] J. Z. Imbrie, Phase diagrams and cluster expansions for low temperatureP(?)2 models. II. The Schwinger function,Commun. Math. Phys. 82:305-343 (1981). · doi:10.1007/BF01237042
[207] S. N. Isakov, Nonanalytic features of the first order phase transition in the Ising model,Commun. Math. Phys. 95:427-443 (1984). · doi:10.1007/BF01210832
[208] R. B. Israel, High-temperature analyticity in classical lattice systems,Commun. Math. Phys. 50:245-257 (1976). · doi:10.1007/BF01609405
[209] R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979). · Zbl 0399.46055
[210] R. B. Israel, Banach algebras and Kadanoff transformations, inRandom Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz, and D. Sz?sz, eds. (North-Holland, Amsterdam, 1981), Vol. II, pp. 593-608.
[211] R. B. Israel, Generic triviality of phase diagrams in spaces of long-range interactions,Commun. Math. Phys. 106:459-466 (1986). · Zbl 0613.60096 · doi:10.1007/BF01207256
[212] R. B. Israel and R. R. Phelps, Some convexity questions arising in statistical mechanics,Math. Scand. 54:133-156 (1984). · Zbl 0605.46013
[213] L. P. Kadanoff and A. Houghton, Numerical evaluations of the critical properties of the two-dimensional Ising model,Phys. Rev. B 11:377-386 (1975). · doi:10.1103/PhysRevB.11.377
[214] J.-P. Kahane,S?ries de Fourier Absolument Convergentes (Springer-Verlag, Berlin, 1970). · Zbl 0195.07602
[215] I. A. Kashapov, Justification of the renormalization-group method,Theor. Math. Phys. 42:184-186 (1980). · doi:10.1007/BF01032123
[216] A. Katz,Principles of Statistical Mechanics (Freeman, San Francisco, 1967).
[217] T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point,J. Stat. Phys. 72:15-37 (1993). · Zbl 1096.82513 · doi:10.1007/BF01048038
[218] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long-range order,Physica 138A:320-358 (1986). · Zbl 1002.82508
[219] J. C. Kieffer, A counterexample to Perez’s generalization of the Shannon-McMillan theorem,Ann. Prob. 1:362-364 (1973); Correction,Ann. Prob. 4:153-154 (1976). · Zbl 0262.94017 · doi:10.1214/aop/1176996994
[220] W. Klein, D. J. Wallace, and R. K. P. Zia, Essential singularities at first-order phase transitions,Phys. Rev. Lett. 37:639-642 (1976). · doi:10.1103/PhysRevLett.37.639
[221] H. Koch and P. Wittwer, A non-Gaussian renormalization group fixed point for hierarchical scalar lattice field theories,Commun. Math. Phys. 106:495-532 (1986). · Zbl 0654.60100 · doi:10.1007/BF01207260
[222] H. Koch and P. Wittwer, On the renormalization group transformation for scalar hierarchical models,Commun. Math. Phys. 138:537-568 (1991). · Zbl 0735.47046 · doi:10.1007/BF02102041
[223] J. M. Kosterlitz, The critical properties of the two-dimensionalxy model,J. Phys. C 7:1046-1060 (1974). · doi:10.1088/0022-3719/7/6/005
[224] F. Koukiou, D. Petritis, and M. Zahradnik, Extension of the Pirogov-Sinai theory to a class of quasiperiodic interactions,Commun. Math. Phys. 118:365-383 (1988). · Zbl 0668.58013 · doi:10.1007/BF01466722
[225] O. K. Kozlov, Gibbs description of a system of random variables,Probl. Inform. Transmission 10:258-265 (1974).
[226] U. Krengel,Ergodic Theorems (de Gruyter, Berlin, 1985).
[227] K. Krickeberg,Probability Theory (Addison-Wesley, Reading, Massachusetts, 1965).
[228] S. Kullback,Information Theory and Statistics (Wiley, New York, 1959). · Zbl 0088.10406
[229] S. Kullback and R. A. Leibler, On information and sufficiency,Ann. Math. Stat. 22:79-86 (1951). · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[230] H. K?nsch, Thermodynamics and statistical analysis of Gaussian random fields,Z. Wahrsch. verw. Geb. 58:407-421 (1981). · Zbl 0458.60053 · doi:10.1007/BF00542645
[231] H. K?nsch, Decay of correlations under Dobrushin’s uniqueness condition and its applications,Commun. Math. Phys. 84:207-222 (1982). · Zbl 0495.60097 · doi:10.1007/BF01208568
[232] H. K?nsch, Non-reversible stationary measures for infinite interacting particle systems,Z. Wahrsch. verw. Geb. 66:407-424 (1984). · Zbl 0541.60098 · doi:10.1007/BF00533706
[233] O. E. Lanford III, Entropy and equilibrium states in classical statistical mechanics, inStatistical Mechanics and Mathematical Problems (Battelle Seattle Rencontres 1971), Lecture Notes in Physics #20 (Springer-Verlag, Berlin, 1973), pp. 1-113.
[234] O. E. Lanford III and D. W. Robinson, Statistical mechanics of quantum spin systems. III,Commun. Math. Phys. 9:327-338 (1968). · Zbl 0172.27702 · doi:10.1007/BF01654286
[235] O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics,Commun. Math. Phys. 13:194-215 (1969). · doi:10.1007/BF01645487
[236] C. B. Lang, Renormalization study of compactU(1) lattice gauge theory,Nucl. Phys. B 280[FS18]:255-275 (1987). · doi:10.1016/0550-3213(87)90147-7
[237] S. Lang,Introduction to Diophantine Approximations (Addison-Wesley, Reading, 1966). · Zbl 0144.04005
[238] I. D. Lawrie, Tricritical scaling and renormalisation of? ? operators in scalar systems near four dimensions,J. Phys. A 12:919-940 (1979). · doi:10.1088/0305-4470/12/6/023
[239] V. A. Lebesgue, Sur l’?quation ind?termin?ex 5 +y 5 =az 5 ,J. Math. Pures Appl. 8:49-70 (1843).
[240] J. L. Lebowitz, Coexistence of phases in Ising ferromagnets,J. Stat. Phys. 16:463-476 (1977). · doi:10.1007/BF01152284
[241] J. L. Lebowitz, Number of phases in one component ferromagnets, inMathematical Problems in Theoretical Physics, Lecture Notes in Physics #80, G. Dell’Antonio, S. Doplicher, and G. Jona-Lasinio, eds. (Springer-Verlag, Berlin, 1978).
[242] J. L. Lebowitz, Microscopic origin of hydrodynamic equations: Derivation and consequences,Physica 140A:232-239 (1986). · Zbl 0666.76009
[243] J. L. Lebowitz and C. Maes, The effect of an external field on an interface, entropic repulsion,J. Stat. Phys. 46:39-49 (1987). · doi:10.1007/BF01010329
[244] J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata,J. Stat. Phys. 59:117-170 (1990). · Zbl 1083.82522 · doi:10.1007/BF01015566
[245] J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition,J. Math. Phys. 7:98-113 (1966). · Zbl 0938.82520 · doi:10.1063/1.1704821
[246] J. L. Lebowitz and O. Penrose, Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuous systems,Commun. Math. Phys. 11:99-124 (1968). · Zbl 0162.59002 · doi:10.1007/BF01645899
[247] J. L. Lebowitz and O. Penrose, Divergent susceptibility of isotropic ferromagnets,Phys. Rev. Lett. 35:549-551 (1975). · doi:10.1103/PhysRevLett.35.549
[248] J. L. Lebowitz, M. K. Phani, and D. F. Styer, Phase diagram of Cu-Au-type alloys,J. Stat. Phys. 38:413-431 (1985). · doi:10.1007/BF01017871
[249] J. L. Lebowitz and E. Presutti, Statistical mechanics of unbounded spin systems,Commun. Math. Phys. 50:195-218 (1976). · doi:10.1007/BF01609401
[250] J. L. Lebowitz and R. H. Schonmann, Pseudo-free energies and large deviations for non-Gibbsian FKG measures,Prob. Theory Related Fields 77:49-64 (1988). · Zbl 0617.60097 · doi:10.1007/BF01848130
[251] D. H. Lehmer [Review of ref. 76],Math. Rev. 16:903 (1955).
[252] B. G. Leroux, Maximum-likelihood estimation for hidden Markov models,Stoch. Proc. Appl. 40:127-143 (1992). · Zbl 0738.62081 · doi:10.1016/0304-4149(92)90141-C
[253] A. L. Lewis, Lattice renormalization group and thermodynamic limit,Phys. Rev. B 16:1249-1252 (1977). · doi:10.1103/PhysRevB.16.1249
[254] E. H. Lieb and A. D. Sokal, A general Lee-Yang theorem for one-component and multicomponent ferromagnets,Commun. Math. Phys. 80:153-179 (1981). · doi:10.1007/BF01213009
[255] T. M. Liggett,Interacting Particle Systems (Springer-Verlag, Berlin, 1985). · Zbl 0559.60078
[256] J. Lindenstrauss, G. Olsen, and Y. Sternfeld, The Poulsen simplex,Ann. Inst. Fourier (Grenoble)28:91-114 (1978). · Zbl 0363.46006
[257] J. L?rinczi and M. Winnink, Some remarks on almost Gibbs states, inProceedings of the NATO Advanced Studies Institute Workshop on Cellular Automata and Cooperative Systems [Les Houches 1992], N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993).
[258] S. K. Ma,Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, 1976).
[259] C. Maes and F. Redig, Anisotropic perturbations of the simple symmetric exclusion process: Long range correlations,J. Phys. I (Paris)1:669-684 (1991).
[260] C. Maes and K. van de Velde, Defining relative energies for the projected Ising measure,Helv. Phys. Acta 65:1055-1068 (1992).
[261] C. Maes and K. van de Velde, The interaction potential of the stationary measure of a high-noise spinflip process,J. Math. Phys. 34:3030-3038 (1993). · Zbl 0776.60126 · doi:10.1063/1.530061
[262] F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization-group transformations for the Ising model,J. Stat. Phys. 72:1169-1177 (1993). · Zbl 1101.82312 · doi:10.1007/BF01048184
[263] F. Martinelli and E. Scoppola, A simple stochastic cluster dynamics: Rigorous results,J. Phys. A 24:3135-3157 (1991). · doi:10.1088/0305-4470/24/13/026
[264] D. G. Martirosyan, Uniqueness of Gibbs states in lattice models with one ground state,Theor. Math. Phys. 63:511-518 (1985). · doi:10.1007/BF01017908
[265] A. E. Mazel and Yu. M. Suhov, Random surfaces with two-sided constraints: An application of the theory of dominant ground states,J. Stat. Phys. 64:111-134 (1991). · Zbl 0935.82520 · doi:10.1007/BF01057870
[266] A. Messager, S. Miracle-Sol?, and C.-E. Pfister, Correlation inequalities and uniqueness of the equilibrium state for the plane rotator ferromagnetic model,Commun. Math. Phys. 58:19-30 (1978). · doi:10.1007/BF01624786
[267] J. Miekisz, The global minimum of energy is not always a sum of local minima?A note on frustration,J. Stat. Phys. 71:425-434 (1993). · Zbl 0945.82506 · doi:10.1007/BF01058430
[268] J. Miekisz, Classical lattice gas model with a unique nondegenerate but unstable periodic ground state configuration,Commun. Math. Phys. 111:533-538 (1987). · Zbl 0651.76034 · doi:10.1007/BF01219072
[269] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider’s method. II,Acta Arith. 53:251-287 (1989). · Zbl 0642.10034
[270] L. J. Mordell,Diophantine Equations (Academic Press, New York, 1969).
[271] J. Moulin-Ollagnier, Th?or?me ergodique presque sous-additif et convergence en moyenne de l’information,Ann. Inst. Henri Poincar? B 19:257-266 (1983). · Zbl 0524.28024
[272] J. Moulin-Ollagnier and D. Pinchon, Mesures de Gibbs invariantes et mesures d’?quilibre,Z. Wahrsch. verw. Geb. 55:11-23 (1981). · Zbl 0438.60087 · doi:10.1007/BF01013457
[273] J. Moulin-Ollagnier and D. Pinchon, Filtre moyennant et valeurs moyennes de capacit?s invariantes,Bull. Soc. Math. Fr. 110:259-277 (1982). · Zbl 0511.22002
[274] J. Moussouris, Gibbs and Markov random systems with constraints,J. Stat. Phys. 10:11-33 (1974). · doi:10.1007/BF01011714
[275] C. Mugler,Platon et la Recherche Math?matique de son ?poque (P. H. Heitz, Strasbourg-Z?rich, 1948), pp. 226-236.
[276] D. R. Nelson, Coexistence-curve singularities in isotropic ferromagnets,Phys. Rev. B 13:2222-2230 (1976). · doi:10.1103/PhysRevB.13.2222
[277] J. Neveu,Bases Math?matiques du Calcul des Probabilit?s, 2nd ?d. (Masson, Paris, 1980) [English translation of first edition:Mathematical Foundations of the Calculus of Probability (Holden-Day, San Francisco, 1965)].
[278] C. M. Newman, Normal fluctuations and the FKG inequalities,Commun. Math. Phys. 74:119-128 (1980). · Zbl 0429.60096 · doi:10.1007/BF01197754
[279] C. M. Newman, A general central limit theorem for FKG systems,Commun. Math. Phys. 91:75-80 (1983). · Zbl 0528.60024 · doi:10.1007/BF01206051
[280] C. M. Newman, Private communication (1984).
[281] Th. Niemeijer and J. M. J. van Leeuwen, Wilson theory for spin systems on a triangular lattice,Phys. Rev. Lett. 31:1411-1414 (1973). · doi:10.1103/PhysRevLett.31.1411
[282] Th. Niemeijer and J. M. J. van Leeuwen, Renormalization theory for Ising-like spin systems, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).
[283] Th. Niemeyer and J. M. J. van Leeuwen, Wilson theory for 2-dimensional Ising spin systems,Physica 71:17-40 (1974). · doi:10.1016/0031-8914(74)90044-5
[284] B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, First- and second-order phase transitions in Potts models: Renormalization-group solution,Phys. Rev. Lett. 43:737-740 (1979). · doi:10.1103/PhysRevLett.43.737
[285] B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory,Phys. Rev. Lett. 35:477-479 (1975). · doi:10.1103/PhysRevLett.35.477
[286] G. L. O’Brien, Scaling transformations for {0, 1}-valued sequences,Z. Wahrsch. verw. Geb. 53:35-49 (1980). · Zbl 0427.60024 · doi:10.1007/BF00531610
[287] S. Olla, Large deviations for almost Markovian processes,Prob. Theory Related Fields 76:395-409 (1987). · Zbl 0649.60032 · doi:10.1007/BF01297493
[288] S. Olla, Large deviations for Gibbs random fields,Prob. Theory Related Fields 77:343-357 (1988). · Zbl 0621.60031 · doi:10.1007/BF00319293
[289] G. H. Olsen, On simplices and the Poulsen simplex, inFunctional Analysis: Surveys and Recent Results II [Proceedings of the Conference on Functional Analysis, Paderborn, Germany, 1979] (North-Holland, Amsterdam, 1980), pp. 31-52.
[290] J. C. Oxtoby,Measure and Category (Springer-Verlag, Berlin, 1971). · Zbl 0217.09201
[291] Y. M. Park, Cluster expansion for classical and quantum lattice systems,J. Stat. Phys. 27:553-576 (1982). · Zbl 0512.60097 · doi:10.1007/BF01011092
[292] Y. M. Park, Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. I. Cluster expansion,Commun. Math. Phys. 114:187-218 (1988). · Zbl 0663.60075 · doi:10.1007/BF01225035
[293] Y. M. Park, Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. II. Phase diagram,Commun. Math. Phys. 114:219-241 (1988). · Zbl 0663.60076 · doi:10.1007/BF01225036
[294] K. R. Parthasarathy,Probability Measures on Metric Spaces (Academic Press, New York, 1967). · Zbl 0153.19101
[295] E. A. Pecherski, The Peierls condition (GPS condition) is not always satisfied,Selecta Math. Sov. 3:87-91 (1983/1984).
[296] R. Peierls, Ising’s model of ferromagnetism,Proc. Camb. Phil. Soc. 32:477-481 (1936). · Zbl 0014.33604 · doi:10.1017/S0305004100019174
[297] P. Pfeuty and G. Toulouse,Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977).
[298] R. R. Phelps,Lectures on Choquet’s Theorem (Van Nostrand, Princeton, New Jersey, 1966). · Zbl 0135.36203
[299] R. R. Phelps, Generic Fr?chet differentiability of the pressure in certain lattice systems,Commun. Math. Phys. 91:557-562 (1983). · Zbl 0537.46039 · doi:10.1007/BF01206022
[300] S. A. Pirogov, Coexistence of phases in a multicomponent lattice liquid with complex thermodynamic parameters,Theor. Math. Phys. 66:218-221 (1986). · doi:10.1007/BF01017776
[301] S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems,Theor. Math. Phys. 25:1185-1192 (1976). · doi:10.1007/BF01040127
[302] S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems. Continuation,Theor. Math. Phys. 26:39-49 (1976). · doi:10.1007/BF01038255
[303] C. Prakash, High-temperature differentiability of lattice Gibbs states by Dobrushin uniqueness techniques,J. Stat. Phys. 31:169-228 (1983). · doi:10.1007/BF01010929
[304] C. Preston,Random Fields (Springer-Verlag, Berlin, 1976).
[305] C. Preston, Construction of specifications, inQuantum Fields, Algebras, Processes, Lecture Notes in Mathematics #534, L. Streit, ed. (Springer-Verlag, Berlin, 1980).
[306] Proclus,Commentaire sur la R?publique [Translation and notes by A. J. Festugi?re] (Librairie Philosophique J. Vrin, Paris, 1970), Vol. II, pp. 133-135. · Zbl 0229.01002
[307] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition,Proc. IEEE 77:257-286 (1989). · doi:10.1109/5.18626
[308] C. Radin, Low temperature and the origin of crystalline symmetry,Int. J. Mod. Phys. B 1:1157-1191 (1987). · doi:10.1142/S0217979287001675
[309] C. Radin, Disordered ground states of classical lattice models,Rev. Math. Phys. 3:125-135 (1991). · Zbl 0751.28009 · doi:10.1142/S0129055X91000059
[310] C. Rebbi and R. H. Swendsen, Monte Carlo renormalization-group studies ofq-state Potts models in two dimensions,Phys. Rev. B 21:4094-4107 (1980). · doi:10.1103/PhysRevB.21.4094
[311] M. Reed and B. Simon,Methods of Modern Mathematical Physics I: Functional Analysis (Academic Press, New York, 1972). · Zbl 0242.46001
[312] L. E. Reichl,A Modern Course in Statistical Physics (University of Texas Press, Austin, Texas, 1980).
[313] P. Ribenboim,The Book of Prime Number Records, 2nd ed. (Springer-Verlag, Berlin, 1989). · Zbl 0642.10001
[314] H. L. Royden,Real Analysis, 2nd ed. (Macmillan, New York, 1968). · Zbl 0197.03501
[315] W. Rudin,Functional Analysis (McGraw-Hill, New York, 1973). · Zbl 0253.46001
[316] D. Ruelle, Some remarks on the ground state of infinite systems in statistical mechanics,Commun. Math. Phys. 11:339-345 (1969). · Zbl 0169.57502 · doi:10.1007/BF01645854
[317] D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, Reading, Massachusetts, 1969). · Zbl 0177.57301
[318] D. Ruelle,Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978).
[319] J. Salas, Private communication (1991).
[320] S. Sarbach and M. E. Fisher, Tricritical scaling in the spherical model limit,J. Appl. Phys. 49:1350-1352 (1978). · doi:10.1063/1.324986
[321] S. Sarbach and M. E. Fisher, Tricriticality and the failure of scaling in the manycomponent limit,Phys. Rev. B 18:2350-2363 (1978). · doi:10.1103/PhysRevB.18.2350
[322] S. Sarbach and M. E. Fisher, Tricritical coexistence in three dimensions: The multicomponent limit,Phys. Rev. B 20:2797-2817 (1979). · doi:10.1103/PhysRevB.20.2797
[323] H. H. Schaefer,Topological Vector Spaces (Springer-Verlag, Berlin, 1980). · Zbl 0435.46003
[324] A. G. Schlijper, Tiling problems and undecidability in the cluster variation method,J. Stat. Phys. 50:689-714 (1988). · Zbl 1084.82508 · doi:10.1007/BF01026496
[325] W. Schmidt,Diophantine Approximation, Lecture Notes in Mathematics #785 (Springer-Verlag, Berlin, 1980). · Zbl 0421.10019
[326] R. H. Schonmann, Second order large deviation estimates for ferromagnetic systems in the phase coexistence region,Commun. Math. Phys. 112:409-422 (1987). · doi:10.1007/BF01218484
[327] R. H. Schonmann, Projections of Gibbs measures may be non-Gibbsian,Commun. Math. Phys. 124:1-7 (1989). · Zbl 0682.60102 · doi:10.1007/BF01218465
[328] R. Schrader, Ground states in classical lattice systems with hard core,Commun. Math. Phys. 16:247-264 (1970). · doi:10.1007/BF01646534
[329] L. Schwartz,Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (Tata Institute of Fundamental Research and Oxford University Press, Oxford, 1973). · Zbl 0298.28001
[330] S. H. Shenker and J. Tobochnik, Monte Carlo renormalization-group analysis of the classical Heisenberg model in two dimensions,Phys. Rev. B 22:4462-4472 (1980). · doi:10.1103/PhysRevB.22.4462
[331] S. B. Shlosman, Uniqueness and half-space nonuniqueness of Gibbs states in Czech models,Theor. Math. Phys. 66:284-293 (1986). · doi:10.1007/BF01018227
[332] S. B. Shlosman, Gaussian behavior of the critical Ising model in dimensiond>4,Sov. Phys. Doklady 33:905-906 (1988).
[333] S. B. Shlosman, Relations among the cumulants of random fields with attraction,Theor. Prob. Appl. 33:645-655 (1989). · Zbl 0705.60044 · doi:10.1137/1133098
[334] S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975).
[335] B. Simon and A. D. Sokal, Rigorous entropy-energy arguments,J. Stat. Phys. 25:679-694 (1981); Addendum,J. Stat. Phys. 29:155 (1982). · doi:10.1007/BF01022362
[336] Ya. G. Sinai, Self-similar probability distributions,Theor. Prob. Appl. 21:64-80 (1976). · Zbl 0358.60031 · doi:10.1137/1121005
[337] Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982).
[338] J. Slawny, Low-temperature properties of classical lattice systems: Phase transitions and phase diagrams, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1985).
[339] A. D. Sokal, Existence of compatible families of proper regular conditional probabilities,Z. Wahrsch. verw. Geb. 56:537-548 (1981). · Zbl 0443.60003 · doi:10.1007/BF00531432
[340] A. D. Sokal, Unpublished (1982).
[341] A. D. Sokal, More surprises in the general theory of lattice systems,Commun. Math. Phys. 86:327-336 (1982). · doi:10.1007/BF01212172
[342] A. D. Sokal, Subadditive set functions on a discrete amenable group, Unpublished manuscript (1984).
[343] A. Stella, Singularities in renormalization group transformations,Physica 108A:211-220 (1981).
[344] K. Subbarao, Renormalization group for Ising spins on a finite lattice,Phys. Rev. B 11:1165-1168 (1975). · doi:10.1103/PhysRevB.11.1165
[345] W. G. Sullivan, Potentials for almost Markovian random fields,Commun. Math. Phys. 33:61-74 (1973). · Zbl 0267.60108 · doi:10.1007/BF01645607
[346] R. H. Swendsen, Monte Carlo renormalization, inReal-Space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer-Verlag, New York, 1982), pp. 57-86.
[347] R. H. Swendsen, Monte-Carlo renormalization group, inPhase Transitions (Carg?se 1980), M. L?vy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982), pp. 395-422.
[348] R. H. Swendsen, Monte Carlo calculation of renormalized coupling parameters. I.d=2 Ising model,Phys. Rev. B 30:3866-3874 (1984). · doi:10.1103/PhysRevB.30.3866
[349] R. H. Swendsen and J.-S. Wang, Non-universal critical dynamics in Monte Carlo simulations,Phys. Rev. Lett. 58:86-88 (1987). · doi:10.1103/PhysRevLett.58.86
[350] G. S. Sylvester, Inequalities for continuous spin Ising ferromagnets,J. Stat. Phys. 15:327-341 (1976). · doi:10.1007/BF01023057
[351] I. Syozi, Transformation of Ising models, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).
[352] P. Tannery, Review of H. Konen, Geschichte der Gleichungt 2?Du 2=1,Bull. Sci. Math. 27:47-51 (1903).
[353] Th?on de Smyrne,Exposition des Connaissances Math?matiques Utiles pour la Lecture de Platon, [translated by J. Dupuis] (Hachette, Paris, 1892), pp. 71-75.
[354] C. J. Thompson,Mathematical Statistical Mechanics (Princeton University Press, Princeton, New Jersey, 1979). · Zbl 0417.60096
[355] C. J. Thompson,Classical Equilibrium Statistical Mechanics (Clarendon Press, Oxford, 1988).
[356] A. L. Toom, Stable and attractive trajectories in multicomponent systems, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 549-575. · Zbl 0441.68053
[357] H. van Beijeren, Interface sharpness in the Ising system,Commun. Math. Phys. 40:1-6 (1975). · doi:10.1007/BF01614092
[358] A. C. D. van Enter, A note on the stability of phase diagrams in lattice systems,Commun. Math. Phys. 79:25-32 (1981). · doi:10.1007/BF01208283
[359] A. C. D. van Enter, Instability of phase diagrams for a class of ?irrelevant? perturbations,Phys. Rev. B 26:1336-1339 (1982). · doi:10.1103/PhysRevB.26.1336
[360] A. C. D. van Enter and R. Fern?ndez, A remark on different norms and analyticity for many-particle interactions,J. Stat. Phys. 56:965-972 (1989). · doi:10.1007/BF01016790
[361] A. C. D. van Enter, R. Fern?ndez, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations,Nucl. Phys. B (Proc. Suppl.) 20:48-52 (1991). · Zbl 0957.82506 · doi:10.1016/0920-5632(91)90880-N
[362] A. C. D. van Enter, R. Fern?ndez, and A. D. Sokal, Renormalization transformations in the vicinity of first-order phase transitions: What can and cannot go wrong,Phys. Rev. Lett. 66:3253-3256 (1991). · doi:10.1103/PhysRevLett.66.3253
[363] A. C. D. van Enter, R. Fern?ndez, and A. D. Sokal, Non-Gibbsian states, inProceedings of the 1992 Prague Workshop on Phase Transitions, R. Koteck?, ed. (World Scientific, Singapore, 1993).
[364] A. C. D. van Enter, R. Fern?ndez, and A. D. Sokal, Non-Gibbsian states for renormalization-group transformations and beyond, inProceedings of the NATO Advanced Studies Institute Workshop on Cellular Automata and Cooperative Systems [Les Houches 1992, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993).
[365] A. C. D. van Enter and J. Miekisz, Breaking of periodicity at positive temperatures,Commun. Math. Phys. 134:647-651 (1990). · Zbl 0711.60109 · doi:10.1007/BF02098451
[366] J. M. J. van Leeuwen, Singularities in the critical surface and universality for Ising-like spin systems,Phys. Rev. Lett. 34:1056-1058 (1975). · doi:10.1103/PhysRevLett.34.1056
[367] V. S. Varadarajan, Measures on topological spaces [in Russian],Mat. Sbornik N.S. 55(97):35-100 (1961) [English translation],Am. Math. Soc. Transl. Ser. 2 48:161-228 (1965)].
[368] S. R. S. Varadhan, Private communication (1984).
[369] S. R. S. Varadhan,Large Deviations and Applications (SIAM, Philadelphia, Pennsylvania, 1984). · Zbl 0549.60023
[370] J. Voigt, Stochastic operators, information and entropy,Commun. Math. Phys. 81:31-38 (1981). · Zbl 0469.47030 · doi:10.1007/BF01941799
[371] J.-S. Wang and J. L. Lebowitz, Phase transitions and universality in nonequilibrium steady states of stochastic Ising models,J. Stat. Phys. 51:893-906 (1988). · Zbl 1086.82561 · doi:10.1007/BF01014891
[372] F. J. Wegner and E. K. Riedel, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems,Phys. Rev. B 7:248-256 (1973). · doi:10.1103/PhysRevB.7.248
[373] A. S. Wightman, Convexity and the notion of equilibrium state in thermodynamics and statistical mechanics. Introduction to R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979).
[374] K. G. Wilson, The renormalization group: Critical phenomena and the Kondo problem,Rev. Mod. Phys. 47:773-840 (1975). · doi:10.1103/RevModPhys.47.773
[375] K. G. Wilson and J. Kogut, The renormalization group and the ?-expansion,Phys. Rep. 12C:75-200 (1974). · doi:10.1016/0370-1573(74)90023-4
[376] M. Zahradn?k, An alternate version of Pirogov-Sinai theory,Commun. Math. Phys. 93:559-581 (1984). · doi:10.1007/BF01212295
[377] M. Zahradn?k, Low temperature continuous spin Gibbs states on a lattice and the interfaces between them?A Pirogov-Sinai type approach, inStatistical Mechanics and Field Theory: Mathematical Aspects (Proceedings, Groningen 1985), Lecture Notes in Physics #257, T. C. Dorlas, N. M. Hugenholtz, and M. Winnink, eds. (Springer-Verlag, Berlin, 1986).
[378] M. Zahradn?k, Analyticity of low-temperature phase diagrams of lattice spin models,J. Stat. Phys. 47:725-755 (1987). · doi:10.1007/BF01206155
[379] M. Zahradn?k, Phase diagrams of lattice spin models. Cours de Troisi?me Cycle de la Physique en Suisse Romande, Lausanne (May 1987).
[380] M. Zahradn?k, Low temperature phase diagrams of lattice models with random impurities, Preprint (1988).
[381] M. Zahradn?k, Private communication (1990).
[382] F. Igloi and C. Vanderzande, Renormalisation group study of the (2 + 1) dimensional Potts model,Physica A135:347-358 (1986).
[383] K. A. Ribet, Wiles proves Taniyama’s conjecture: Fermat’s last theorem follows,Notices Amer. Math. Soc. 40:575-576 (1993). · Zbl 1194.11064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.