×

zbMATH — the first resource for mathematics

Some asymptotic methods for strongly nonlinear equations. (English) Zbl 1102.34039
The purpose of this survey paper is to discuss recent developments in asymptotic methods for solving both weakly and strongly nonlinear differential equations. In particular, variational approaches, asymptotic expansions in a small parameter, parametrized perturbation, homotopy perturbation, iteration perturbation methods are reviewed and appropriate illustrative examples are considered. The paper is finished with an interesting historical overview of ancient Chinese numerical methods which are not-so-well-known to the mathematical community outside China.

MSC:
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems, general theory
34E05 Asymptotic expansions of solutions to ordinary differential equations
34E13 Multiple scale methods for ordinary differential equations
49J40 Variational inequalities
01A25 History of mathematics in China
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abassy T. A., Int. J. Nonl. Sci. Num. Simulation 5 pp 327–
[2] Abbasbandy S., Chaos Solitons Fractals
[3] Abbasbandy S., Chaos Solitons Fractals
[4] Abbasbandy S., Chaos Solitons Fractals
[5] Abdusalam H. A., Int. J. Nonl. Sci. Num. Simulation 6 pp 99–
[6] DOI: 10.1016/j.chaos.2005.08.044 · Zbl 1101.82018 · doi:10.1016/j.chaos.2005.08.044
[7] Abulwafa E. M., Chaos Solitons Fractals
[8] Acton J. R., Solving Equations with Physical Understanding (1985)
[9] DOI: 10.1016/0022-247X(88)90170-9 · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[10] Agrwal V. P., J. Sound Vib. 57 pp 463–
[11] DOI: 10.1007/978-3-642-72079-6 · doi:10.1007/978-3-642-72079-6
[12] DOI: 10.1115/1.3120319 · doi:10.1115/1.3120319
[13] DOI: 10.1016/j.chaos.2005.04.069 · Zbl 1088.35534 · doi:10.1016/j.chaos.2005.04.069
[14] Bao F. B., Int. J. Nonl. Sci. Num. Simulation 6 pp 295–
[15] Bellman R., Perturbation Techniques in Mathematics, Physics and Engineering (1964) · Zbl 0274.34001
[16] DOI: 10.1063/1.528326 · Zbl 0684.34008 · doi:10.1063/1.528326
[17] Bildik N., Int. J. Nonl. Sci. Num. Simulation 7 pp 65–
[18] Bogoliubov N. N., Asymptotic Method in the Theory of Nonlinear Oscillations (1985)
[19] Bogning J. R., Int. J. Nonl. Sci. Num. Simulation 6 pp 371–
[20] Bowong S., Int. J. Nonl. Sci. Num. Simulation 6 pp 387–
[21] Bowong S., Int. J. Nonl. Sci. Num. Simulation 6 pp 399–
[22] M. Braun, Applied Mathematical Sciences, 3rd edn. 15 (Springer-Verlag, New York, 1983) pp. 120–122.
[23] DOI: 10.1016/0020-7462(84)90026-X · Zbl 0564.70024 · doi:10.1016/0020-7462(84)90026-X
[24] Burton T. D., Int. J. Nonl. Mech. 21 pp 125–
[25] Cai X. C., Int. J. Nonl. Sci. Num. Simulation 7 pp 109–
[26] DOI: 10.1016/0020-7462(95)00043-7 · Zbl 0864.70015 · doi:10.1016/0020-7462(95)00043-7
[27] Chen X. P., Int. J. Nonl. Sci. Num. Simulation 6 pp 421–
[28] DOI: 10.1016/0020-7462(91)90066-3 · Zbl 0755.70021 · doi:10.1016/0020-7462(91)90066-3
[29] Cveticanin L., Chaos Solitons Fractals · Zbl 1046.74520
[30] DOI: 10.1016/j.mechrescom.2005.06.012 · Zbl 1192.70026 · doi:10.1016/j.mechrescom.2005.06.012
[31] Dai S. Q., Science in China (Series A) 33 pp 153–
[32] Dai S. Q., Acta Mechanica Sinica 6
[33] DOI: 10.1103/PhysRevLett.70.3361 · Zbl 1051.65505 · doi:10.1103/PhysRevLett.70.3361
[34] DOI: 10.1016/S0020-7225(98)00036-6 · Zbl 1210.01007 · doi:10.1016/S0020-7225(98)00036-6
[35] DOI: 10.1016/j.chaos.2005.02.012 · Zbl 1073.35010 · doi:10.1016/j.chaos.2005.02.012
[36] El-Sabbagh M. F., Int. J. Nonl. Sci. Num. Simulation 6 pp 151–
[37] El-Shahed M., Int. J. Nonl. Sci. Num. Simulation 6 pp 163–
[38] Finlayson B. A., The Method of Weighted Residual and Variational Principles (1972) · Zbl 0319.49020
[39] Ge Z. M., Int. J. Nonl. Sci. Num. Simulation 6 pp 187–
[40] Gu B. H., Int. J. Nonl. Sci. Num. Simulation 6 pp 215–
[41] DOI: 10.1103/PhysRevB.72.075358 · doi:10.1103/PhysRevB.72.075358
[42] Khuri S. A., Appl. Math. Comput. 147 pp 131–
[43] Hagedorn P., Nonlinear Oscillations (1981)
[44] DOI: 10.1016/j.physleta.2005.10.005 · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[45] DOI: 10.1016/j.physleta.2005.08.014 · Zbl 1195.34116 · doi:10.1016/j.physleta.2005.08.014
[46] DOI: 10.1016/j.chaos.2005.03.006 · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[47] DOI: 10.1016/j.chaos.2005.03.007 · Zbl 1093.34520 · doi:10.1016/j.chaos.2005.03.007
[48] He J. H., Int. J. Nonl. Sci. Num. Simulation 6 pp 207–
[49] DOI: 10.1002/cta.300 · Zbl 1169.94352 · doi:10.1002/cta.300
[50] DOI: 10.1016/j.amc.2003.08.011 · Zbl 1061.65040 · doi:10.1016/j.amc.2003.08.011
[51] DOI: 10.1016/j.amc.2003.08.008 · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[52] DOI: 10.1016/S0096-3003(03)00341-2 · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[53] DOI: 10.1016/S0096-3003(03)00348-5 · Zbl 1049.65039 · doi:10.1016/S0096-3003(03)00348-5
[54] He J. H., Appl. Math. Comput. 151 pp 887–
[55] DOI: 10.1016/S0960-0779(03)00265-0 · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[56] He J. H., Appl. Math. Comput. 143 pp 533–
[57] He J. H., Appl. Math. Comput. 143 pp 539–
[58] He J. H., Phys. Rev. Lett. 90
[59] He J. H., Phys. Rev. Lett. 91
[60] DOI: 10.1016/S0898-1221(03)80002-0 · Zbl 1035.65070 · doi:10.1016/S0898-1221(03)80002-0
[61] DOI: 10.1016/S0096-3003(02)00189-3 · Zbl 1028.65085 · doi:10.1016/S0096-3003(02)00189-3
[62] DOI: 10.1016/S0096-3003(01)00312-5 · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[63] DOI: 10.1016/S0093-6413(02)00237-9 · Zbl 1048.70011 · doi:10.1016/S0093-6413(02)00237-9
[64] He J. H., Int. J. Nonl. Sci. Num. Simulation 2 pp 257–
[65] He J. H., Int. J. Nonl. Sci. Num. Simulation 2 pp 317–
[66] DOI: 10.1016/S0020-7462(00)00116-5 · Zbl 1116.34320 · doi:10.1016/S0020-7462(00)00116-5
[67] DOI: 10.1016/S0020-7462(00)00117-7 · Zbl 1116.34321 · doi:10.1016/S0020-7462(00)00117-7
[68] DOI: 10.1177/107754630100700501 · Zbl 1015.70019 · doi:10.1177/107754630100700501
[69] DOI: 10.1023/A:1010349221054 · Zbl 0986.70016 · doi:10.1023/A:1010349221054
[70] DOI: 10.1016/S0096-3003(99)00104-6 · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[71] He J. H., Int. J. Nonl. Sci. Num. Simulation 1 pp 51–
[72] DOI: 10.1016/S0045-7825(99)00018-3 · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[73] DOI: 10.1016/S1007-5704(99)90065-5 · Zbl 0932.34058 · doi:10.1016/S1007-5704(99)90065-5
[74] DOI: 10.1016/S0020-7462(98)00048-1 · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[75] DOI: 10.1016/S0045-7825(98)00108-X · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[76] DOI: 10.1016/S0045-7825(98)00109-1 · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[77] DOI: 10.1016/j.chaos.2005.10.100 · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[78] DOI: 10.1098/rspa.1938.0037 · JFM 64.1452.01 · doi:10.1098/rspa.1938.0037
[79] DOI: 10.1016/j.chaos.2005.04.061 · Zbl 1083.37041 · doi:10.1016/j.chaos.2005.04.061
[80] Ji Z., Mathematics in the Northern-Southern, Sui and Tang Dynasties (1999)
[81] Kim Y. H., Int. J. Nonl. Sci. Num. Simulation 6 pp 311–
[82] Laurenzi B. J., J. Math. Phys. 30 pp 2535–
[83] DOI: 10.1006/jsvi.1997.1187 · doi:10.1006/jsvi.1997.1187
[84] DOI: 10.1115/1.2894068 · Zbl 0769.70017 · doi:10.1115/1.2894068
[85] DOI: 10.1115/1.2791935 · doi:10.1115/1.2791935
[86] DOI: 10.1201/9780203491164 · Zbl 1051.76001 · doi:10.1201/9780203491164
[87] DOI: 10.1017/S0022112099004292 · Zbl 0931.76017 · doi:10.1017/S0022112099004292
[88] DOI: 10.1016/j.chaos.2004.05.005 · Zbl 1135.76597 · doi:10.1016/j.chaos.2004.05.005
[89] Liu H. M., Int. J. Nonl. Sci. Num. Simulation 5 pp 95–
[90] DOI: 10.1016/j.chaos.2004.05.004 · Zbl 1078.34509 · doi:10.1016/j.chaos.2004.05.004
[91] DOI: 10.1016/j.compchemeng.2004.01.006 · doi:10.1016/j.compchemeng.2004.01.006
[92] Lu Q. S., Int. J. Nonl. Sci. Num. Simulation 6
[93] Mickens R. E., An Introduction to Nonlinear Oscillations (1981) · Zbl 0459.34002
[94] Mickens R. E., J. Sound Vib. 193 pp 747–
[95] DOI: 10.1016/j.chaos.2005.04.113 · Zbl 1086.65113 · doi:10.1016/j.chaos.2005.04.113
[96] Momani S., Chaos Solitons Fractals
[97] Nayfeh A. H., Introduction to Perturbation Methods (1981) · Zbl 0449.34001
[98] Nayfeh A. H., Problems in Perturbation (1985) · Zbl 0573.34001
[99] Nayfeh A. H., Nonlinear Oscillations (1979)
[100] Ning J. G., Int. J. Nonl. Sci. Num. Simulation 6 pp 417–
[101] Ning J. G., Int. J. Nonl. Sci. Num. Simulation 7 pp 71–
[102] Odibat Z. M., Int. J. Nonl. Sci. Num. Simulation 7 pp 27–
[103] Rajendran S., Phys. Rev. Lett. 93
[104] DOI: 10.1016/j.chaos.2005.04.084 · Zbl 1108.34030 · doi:10.1016/j.chaos.2005.04.084
[105] DOI: 10.1016/j.chaos.2005.04.063 · Zbl 1088.35536 · doi:10.1016/j.chaos.2005.04.063
[106] Rossler O. E., Int. J. Nonl. Sci. Num. Simulation 6 pp 349–
[107] DOI: 10.1063/1.1707470 · Zbl 0063.06972 · doi:10.1063/1.1707470
[108] Siddiqui A. M., Int. J. Nonl. Sci. Num. Simulation 7 pp 7–
[109] Siddiqui A. M., Int. J. Nonl. Sci. Num. Simulation 7 pp 15–
[110] DOI: 10.1016/j.chaos.2005.08.054 · Zbl 1099.35521 · doi:10.1016/j.chaos.2005.08.054
[111] Sweilam N. H., Chaos Solitons Fractals
[112] DOI: 10.1007/978-3-642-97149-5 · doi:10.1007/978-3-642-97149-5
[113] Wan Y. Q., Int. J. Nonl. Sci. Num. Simulation 5 pp 5–
[114] DOI: 10.1016/j.chaos.2004.11.026 · Zbl 1083.35122 · doi:10.1016/j.chaos.2004.11.026
[115] DOI: 10.1016/j.chaos.2004.09.044 · Zbl 1092.37054 · doi:10.1016/j.chaos.2004.09.044
[116] DOI: 10.1016/j.chaos.2005.01.039 · Zbl 1070.35073 · doi:10.1016/j.chaos.2005.01.039
[117] Wazwaz A. M., Appl. Math. Comput. 92 pp 1–
[118] DOI: 10.1016/j.chaos.2005.06.004 · Zbl 1084.35079 · doi:10.1016/j.chaos.2005.06.004
[119] Wu T. M., Chaos Solitons Fractals
[120] DOI: 10.1016/S0960-0779(04)00577-6 · doi:10.1016/S0960-0779(04)00577-6
[121] DOI: 10.1016/j.chaos.2005.05.042 · Zbl 1079.92027 · doi:10.1016/j.chaos.2005.05.042
[122] DOI: 10.1016/j.chaos.2005.04.047 · Zbl 1094.34031 · doi:10.1016/j.chaos.2005.04.047
[123] DOI: 10.1016/j.chaos.2005.04.003 · Zbl 1140.70477 · doi:10.1016/j.chaos.2005.04.003
[124] Zhang Z. D., Int. J. Nonl. Sci. Num. Simulation 6 pp 81–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.