×

zbMATH — the first resource for mathematics

Nonlinear boundary value problem of first order impulsive functional differential equations. (English) Zbl 1102.34052
The authors are concerned with boundary value problems for first-order impulsive functional-differential equations. By using lower and upper solutions and monotone iterative techniques, they establish several existence results. Examples to illustate the efficiency of the results obtained are discussed.

MSC:
34K10 Boundary value problems for functional-differential equations
34K45 Functional-differential equations with impulses
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002
[2] Nieto, J.J.; Rodríguez-López, R., Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions, Comput. math. appl., 40, 433-442, (2000) · Zbl 0958.34055
[3] Xu, H.-K.; Liz, E., Boundary value problems for functional differential equations, Nonlinear anal., 41, 971-988, (2000) · Zbl 0972.34054
[4] Nieto, J.J., Differential inequalities of functional perturbations of first-order ordinary differential equations, Appl. math. lett., 15, 173-179, (2002) · Zbl 1014.34060
[5] Nieto, J.J.; Rodríguez-López, R., Remarks on periodic boundary value problems for functional differential equations, J. comput. appl. math., 158, 339-353, (2003) · Zbl 1036.65058
[6] Jiang, D.Q.; Nieto, J.J.; Zuo, W.J., On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations, J. math. anal. appl., 289, 691-699, (2004) · Zbl 1134.34322
[7] Jankowski, T., Existence of solutions of boundary value problems for differential equations with delayed argument, J. comput. appl. math., 156, 239-252, (2003) · Zbl 1048.34107
[8] Jankowski, T., Advanced differential equations with nonlinear boundary conditions, J. math. anal. appl., 304, 490-503, (2005) · Zbl 1092.34032
[9] Yebdri, M.; Bouguima, S.M.; Arino, O., An iterative method for functional differential equations, Appl. math. comput., 161, 265-269, (2005) · Zbl 1071.34064
[10] Sun, J.T., Stability criteria of impulsive differential system, Appl. math. comput., 156, 85-91, (2004) · Zbl 1062.34006
[11] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., Less conservative conditions for asymptotic stability of impulsive control systems, IEEE trans. automat. control, 48, 829-831, (2003) · Zbl 1364.93691
[12] Ding, W.; Mi, J.R.; Han, M.A., Periodic boundary value problem for the first order impulsive functional differential equations, Appl. math. comput., 165, 433-446, (2005) · Zbl 1081.34081
[13] Ding, W.; Han, M.A., Periodic boundary value problem for the second order impulsive functional differential equations, Appl. math. comput., 155, 709-726, (2004) · Zbl 1064.34067
[14] Samoilenko, A.M.; Perestyuk, N.A., Impulsive differential equations, (1995), World Scientific Singapore · Zbl 0837.34003
[15] Rogovchenko, Y.V., Impulsive evolution systems: main results and new trends, Dyn. contin. discrete impuls syst., 3, 57-88, (1997) · Zbl 0879.34014
[16] Nieto, J.J., Basic theory or nonresonance impulsive periodic problems of first order, J. math. anal. appl., 205, 423-433, (1997) · Zbl 0870.34009
[17] Rachunkova, I.; Tvrdy, M., Existence results for impulsive second-order periodic problems, Nonlinear anal., 59, 133-146, (2004) · Zbl 1084.34031
[18] Franco, D., A contribution to the study of functional differential equations with impulses, Math. nachr., 218, 49-60, (2000) · Zbl 0966.34073
[19] Tang, S.; Chen, L., Density-dependent birth rate, birth pulses and their population dynamic consequences, J. math. biol., 44, 185-199, (2002) · Zbl 0990.92033
[20] Yan, J., Differential inequalities of functional, existence and global attractivity of positive periodic solution of periodic single-species impulsive lotka – volterra systems, Math. comput. modelling, 40, 509-518, (2004) · Zbl 1112.34052
[21] Nieto, J.J., Impulsive resonance periodic problems of first order, Appl. math. lett., 15, 489-493, (2002) · Zbl 1022.34025
[22] Nieto, J.J., Periodic boundary value problems for first-order impulsive ordinary differential equations, Nonlinear anal., 51, 1223-1232, (2002) · Zbl 1015.34010
[23] Franco, D.; Nieto, J.J.; Oregan, D., Anti-periodic boundary value problem for nonlinear first order ordinary differential equations, Math. inequal. appl., 6, 477-485, (2003) · Zbl 1097.34015
[24] Franco, D.; Nieto, J.J.; Oregan, D., Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions, Appl. math. comput., 153, 793-802, (2004) · Zbl 1058.34015
[25] Luo, Z.G.; Shen, J.H.; Nieto, J.J., Anti-periodic boundary value problems for first order impulsive ordinary differential equations, Comput. math. appl., 49, 253-261, (2005) · Zbl 1084.34018
[26] Cabada, A.; Ferreiro, J.B.; Nieto, J.J., Greens function and comparison principles for first order periodic differential equations with piecewise constant arguments, J. math. anal. appl., 291, 690-697, (2004) · Zbl 1057.34089
[27] Nieto, J.J.; Rodríguez-López, R., Greens function for second-order periodic boundary value problems with piecewise constant arguments, J. comput. appl. math., 304, 33-57, (2005) · Zbl 1078.34046
[28] J.J. Nieto, R. Rodríguez-López, Periodic boundary value problems for non-Lipschitzian impulsive functional differential equations, J. Comput. Appl. Math., in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.