×

On the moments of traces of matrices of classical groups. (English) Zbl 1102.60001

Summary: We consider random matrices, belonging to the groups \(U(n)\), \(O(n)\), \(SO(n)\), and \(Sp(n)\) and distributed according to the corresponding unit Haar measure. We prove that the moments of traces of powers of the matrices coincide with the moments of certain Gaussian random variables if the order of moments is low enough. Corresponding formulas, proved partly before by various methods, are obtained here in the framework of a unique method, reminiscent of the method of correlation equations of statistical mechanics. The equations are derived by using a version of the integration by parts.

MSC:

60A10 Probabilistic measure theory
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baxter, G.: Polynomials, defined by a difference system. J. Math. Anal. Appl. 2, 223-263 (1961) · Zbl 0116.35704
[2] Bumps, D., Diaconis, P., Keller, J.B.: Unitary correlations and the Fejer kernel. Math. Phys. Analysis, and Geometry. 5, 101-123 (2002) · Zbl 1005.15014
[3] Brouwer, P., Beenakker, C.: Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems. J. Math. Phys. 37, 4904-4934 (1996) · Zbl 0861.22014
[4] Diaconis, P., Evans, S.: Linear functionals of eigenvalues of random matrices. Trans. of AMS 353, 2615-2633 (2001) · Zbl 1008.15013
[5] Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49-62 (1994) · Zbl 0807.15015
[6] Dyson, F.J.: Statistical theory of energy levels of complex systems. I. J. Math. Phys. 3, 1191-1198 (1962) · Zbl 0111.32703
[7] Gorin, T.: Integrals of monomials over the orthogonal group. J. Math. Phys. 43, 3342-3351 (2002) · Zbl 1060.22005
[8] Haake, F., Sommers, H.-J., Weber, J.: Fluctuations and ergodicity of the form factor of quantum propagators and random unitary matrices. J. Phys.: Math. Gen. A32, 6903-6913 (1999) · Zbl 0953.81020
[9] Hughes, C.P., Rudnick, Z.: Mock-Gaussian behaviour for linear statistics of classical compact groups. J. Phys. A: Math. Gen. 36, 2919-2932 (2003) · Zbl 1034.60003
[10] Hughes, C.P., Rudnick, Z.: Linear statistics of low lying zeros of L-functions. Quarterly J. of Math. 54, 309-333 (2003) · Zbl 1068.11055
[11] Johansson, K.: On random matrices from the compact groups. Ann. of Math. 145, 519-545 (1997) · Zbl 0883.60010
[12] Katz, N., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. Providence: AMS, 1999 · Zbl 0958.11004
[13] Mehta, M.L.: Random Matrices. New York: Academic Press, 1991 · Zbl 0780.60014
[14] Prosen, T., Seligman, T.A., Weidenmuller,H.A.: Integration over matrix spaces with unique invariant measure. J. Math. Phys. 43, 5135-5144 (2002) · Zbl 1060.81033
[15] Rains, E.: High powers of random elements of compact Lee groups. Prob. Theory and Related Fields 107, 219-241 (1997) · Zbl 0868.60012
[16] Ram, A.: Characters of Brauer?s algebras. Pacific J. Math. 169, 173-200 (1995); A ??second orthogonality relation?? for characters of Brauer?s algebras. European J. Combinat. 18, 685-706 (1997) · Zbl 0839.20019
[17] Ruelle, D.: Statistical Mechanics: Rigorous Results. New York: W. A. Benjamin, 1991 · Zbl 1016.82500
[18] Samuel, S.: U(N) Integrals, 1/N, and De Witt?t?Hooft anomalies. J. Math. Phys. 21, 2695-2703 (1980)
[19] Soshnikov, A.: The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28, 1353-1370 (2000) · Zbl 1021.60018
[20] Szego, G.: Orthogonal Polynomials. Providence: AMS, 1975
[21] Weingarten, D.: Asymptotic behavior of group integrals in the limit of infinite rank. J. Math. Phys. 19, 999-1001 (1977) · Zbl 0388.28013
[22] Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton: Princeton University Press, 1997 · Zbl 1024.20501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.