# zbMATH — the first resource for mathematics

The permanence and global attractivity of Lotka–Volterra competition system with feedback controls. (English) Zbl 1103.34038
The author studies the following Lotka-Volterra type competitive system with feedback control \begin{aligned} \dot x_i(t)=x_i(t)[b_i(t)-\sum_{j=1}^n a_{ij}(t)x_j(t)-d_i(t)u_i(t)],\\ \dot u_i(t)=r_i(t)-e_i(t)u_i(t)+f_i(t)x_i(t),\quad i=1,2,\dots,n, \end{aligned} \tag{1} where $$x_i(t)$$ represents the density of the $$i$$th species at time $$t$$, respectively, $$i=1,2,\dots,n$$, and $$u_i(t)$$ is the control variable, $$i=1,2,\dots,n$$. $$a_{ij}(t), b_i(t), d_i(t),$$ $$r_i(t), e_i(t), f_i(t)$$, $$i,j=1,2,\dots, n$$, are continuous functions defined on $$[c,+\infty)$$. Given a function $$g(t)$$ defined on $$[c,+\infty)$$, let $$g_M=\sup\{g(t)| c\leq t<+\infty\}, g_L=\inf\{g(t)| c\leq t<+\infty\}.$$ It is assumed in (1) that $$a_{ij}(t)\geq 0, a_{ijM}<+\infty, a_{ijL}>0, b_i(t)>0, b_{iM}<+\infty, b_{iL}>0, d_i(t)\geq 0, d_{iM}<+\infty, d_{iL}\geq 0, r_i(t)\geq 0, r_{iM}<+\infty, r_{iL}\geq 0, e_i(t)>0, e_{iM}<+\infty, e_{iL}>0, f_i(t)>0, f_{iM}<+\infty$$ and $$f_{iL}>0$$.
Some average conditions for the permanence of system (1) and sufficient conditions for the global attractivity of positive solutions of system (1) are derived, respectively. The results developed by J. Zhao, J. Jiang and A. C. Lazer [Nonlinear Anal., Real World Appl. 5, 265–276 (2004; Zbl 1085.34040)] are generalized.

##### MSC:
 34D05 Asymptotic properties of solutions to ordinary differential equations 34C25 Periodic solutions to ordinary differential equations 92D25 Population dynamics (general) 34D20 Stability of solutions to ordinary differential equations 34D40 Ultimate boundedness (MSC2000)
Full Text:
##### References:
 [1] Ahmad, S., On the nonautonomous volterra – lotka competition equations, Proc. amer. math. soc., 117, 199-204, (1993) · Zbl 0848.34033 [2] Ahmad, S.; Lazer, A.C., Average conditions for global asymptotic stability in a nonautonomous lotka – volterra system, Nonlinear anal., 40, 37-49, (2000) · Zbl 0955.34041 [3] Chen, F.D., Periodicity in a nonlinear predator – prey system with state dependent delays, Acta math. appl. sinica engl. ser., 21, 1, 1-10, (2005) [4] Chen, F.D., Positive periodic solutions of neutral lotka – volterra system with feedback control, Appl. math. comput., 162, 3, 1279-1302, (2005) · Zbl 1125.93031 [5] Chen, F.D.; Lin, S.J., Periodicity in a logistic type system with several delays, Comput. math. appl., 48, 1-2, 35-44, (2004) · Zbl 1061.34050 [6] Chen, F.D.; Lin, F.X.; Chen, X.X., Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control, Appl. math. comput., 158, 1, 45-68, (2004) · Zbl 1096.93017 [7] Chen, F.D.; Sun, D.X.; Lin, F.X., Periodicity in a food-limited population model with toxicants and state dependent delays, J. math. anal. appl., 288, 1, 132-142, (2003) [8] Fan, M.; Wong, P.J.Y.; Agarwal, R.P., Periodicity and stability in periodic $$n$$-species lotka – volterra competition system with feedback controls and deviating arguments, Acta math. sinica, 19, 4, 801-822, (2003) · Zbl 1047.34080 [9] Gopalsamy, K., Global asymptotic stability in a periodic lotka – volterra system, J. austral. math. soc. ser. B, 27, 66-72, (1985) · Zbl 0588.92019 [10] Gopalsamy, K.; Weng, P.X., Feedback regulation of logistic growth, Internat. J. math. sci., 16, 1, 177-192, (1993) · Zbl 0765.34058 [11] He, C., On almost periodic solutions of lotka – volterra almost periodic competition systems, Ann. differential equations, 9, 1, 26-36, (1993) · Zbl 0781.34037 [12] Huang, Z.K.; Chen, F.D., Almost periodic solution of two species model with feedback regulation and infinite delay, J. eng. math., 20, 5, 33-40, (2004) · Zbl 1138.34344 [13] Huo, H.; Li, W., Positive periodic solutions of a class of delay differential system with feedback control, Appl. math. comput., 148, 1, 35-46, (2004) · Zbl 1057.34093 [14] Li, X.Y.; Fan, M.; Wang, K., Positive periodic solution of single species model with feedback regulation and infinite delay, Appl. math. J. chin. univ. ser. A, 17, 1, 13-21, (2002), (in Chinese) · Zbl 1005.34039 [15] Teng, Z., The almost periodic komogorov competitive systems, Nonlinear analysis, 42, 1221-1230, (2000) · Zbl 1135.34319 [16] Tineo, A., An iterative scheme for the $$N$$-competing species problem, J. differential equations, 116, 1-15, (1995) · Zbl 0823.34048 [17] Tineo, A.; Alvarz, C., A different consideration about the globally asymptotically stable solution of the periodic $$n$$-competing species problem, J. math. anal. appl., 159, 44-55, (1991) · Zbl 0729.92025 [18] Weng, P.X., Global attractivity in a periodic competition system with feedback controls, Acta appl. math., 12, 11-21, (1996) · Zbl 0859.34061 [19] Weng, P.X., Existence and global stability of positive periodic solution of periodic integro-differential systems with feedback controls, Comput. math. appl., 40, 747-759, (2000) · Zbl 0962.45003 [20] Xia, Y.H.; Cao, J.D.; Zhang, H.Y.; Chen, F.D., Almost periodic solutions in $$n$$-species competitive system with feedback controls, J. math. anal. appl., 294, 504-522, (2004) [21] Xiao, Y.N.; Tang, S.Y.; Chen, J.F., Permanence and periodic solution in competition system with feedback controls, Math. comput. model., 27, 6, 33-37, (1998) · Zbl 0896.92032 [22] Yang, F.; Jiang, D.Q., Existence and global attractivity of positive periodic solution of a logistic growth system with feedback control and deviating arguments, Ann. differential equations, 17, 4, 337-384, (2001) · Zbl 1004.34030 [23] Yin, F.Q.; Li, Y.K., Positive periodic solutions of a single species model with feedback regulation and distributed time delay, Appl. math. comput., 153, 475-484, (2004) · Zbl 1087.34051 [24] Zhao, X.Q., The qualitative analysis of $$n$$-species lotka – volterra periodic competition systems, Math. comput. model., 15, 11, 3-8, (1991) · Zbl 0756.34048 [25] Zhao, J.D.; Jiang, J.F.; Lazer, A.C., The permanence and global attractivity in a nonautonomous lotka – volterra system, Nonlinear anal.real world appl., 5, 265-276, (2004) · Zbl 1085.34040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.