×

zbMATH — the first resource for mathematics

Performance evaluation of UKF-based nonlinear filtering. (English) Zbl 1103.93045
Summary: The performance of the modified unscented Kalman filter (UKF) for nonlinear stochastic discrete-time system with linear measurement equation is investigated. It is proved that under certain conditions, the estimation error of the UKF remains bounded. Furthermore, it is shown that the design of noise covariance matrix plays an important role in improving the stability of the algorithm. Error behavior of the UKF is then derived in terms of mean square error (MSE), and the Cramér-Rao lower bound (CRLB) is introduced as a performance measure. The modified UKF is found to approach the CRLB if the difference between the real noise covariance matrix and the selected one is small enough. These results are verified by using Monte Carlo simulations on two example systems.

MSC:
93E11 Filtering in stochastic control theory
93E15 Stochastic stability in control theory
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agniel, R.G.; Jury, E.I., Almost sure boundedness of randomly sampled systems, SIAM journal on control, 9, 372-384, (1971) · Zbl 0203.47401
[2] Alspach, D.L.; Sorenson, H.W., Non-linear Bayesian estimation using Gaussian sum approximation, IEEE transactions on automatic control, AC-20, 439-447, (1972) · Zbl 0264.93023
[3] Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T., A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking, IEEE transactions on signal processing, 50, 2, 174-188, (2002)
[4] Boutayeb, M.; Aubry, D., A strong tracking extended Kalman observer for nonlinear discrete-time systems, IEEE transactions on automatic control, 44, 8, 1550-1556, (1999) · Zbl 0957.93086
[5] Boutayeb, M.; Rafaralahy, H.; Darouach, M., Convergence analysis of the extended Kalman filter used as observer for nonlinear deterministic discrete-time systems, IEEE transactions on automatic control, 42, 4, 581-586, (1997) · Zbl 0876.93089
[6] Caffery, J.; Stuber, G.L., Nonlinear multiuser parameter estimation and tracking in CDMA systems, IEEE transactions on communications, 48, 12, 2053-2063, (2000)
[7] Farina, A.; Ristic, B.; Benvenuti, D., Tracking a ballistic target: comparison of several nonlinear filters, IEEE transactions on aerospace and electronic systems, 38, 3, 854-867, (2002)
[8] Gobbo, D.D.; Napolitano, M.; Famouri, P.; Innocenti, M., Experimental application of extended Kalman filtering for sensor validation, IEEE transactions on control system technology, 9, 2, 376-380, (2001)
[9] Goodwin, G.C.; Sin, K.S., Adaptive filtering prediction and control, (1984), Prentice-Hall Englewood Cliffs, NJ · Zbl 0653.93001
[10] Gordon, N.J.; Salmond, D.J.; Smith, A.F.M., Novel approach to nonlinear/nonlinear-gaussian Bayesian state estimation, Proceedings of the institute of electrical engineers, F, 140, 2, 107-113, (1993)
[11] Hall, D.L.; Llinas, J., Handbook of multisensor data fusion, (2001), CRC Press Boca Raton, FL
[12] Julier, S. J. (2002). The scaled unscented transformation. Proceedings of the American Control Conference (pp. 4555-4559) Anchorage, AK.
[13] Julier, S.J.; Uhlmann, J.K., Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92, 3, 401-422, (2004)
[14] Julier, S. J., Uhlmann, J. K., & Durrant-Whyte, H. F. (1995). A new approach for filtering nonlinear system. Proceedings of the American Control Conference (pp. 1628-1632) Washington, DC.
[15] Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F., A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE transactions on automatic control, 45, 3, 477-482, (2000) · Zbl 0973.93053
[16] Kramer, S.C.; Sorenson, H.W., Recursive Bayesian estimation using piece-wise constant approximations, Automatica, 24, 789-801, (1988) · Zbl 0682.93058
[17] La Scala, B.F.; Bitmead, R.R.; Quinn, B.G., An extended Kalman filter frequency tracker for high-noise environments, IEEE transactions on signal processing, 44, 431-434, (1996)
[18] Leung, H.; Zhu, Z., Performance evaluation of EKF-based chaotic synchronization, IEEE transactions on circuits and systems— fundamental theory and applications, 48, 9, 1118-1125, (2001)
[19] Lewis, F.L., Optimal estimation, (1986), Wiley NewYork
[20] Ljung, L., Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE transactions on automatic control, AC-24, 36-50, (1979) · Zbl 0399.93054
[21] Reif, K.; Gunther, S.; Yaz, E.; Unbehauen, R., Stochastic stability of the discrete-time extended Kalman filter, IEEE transactions on automatic control, 44, 4, 714-728, (1999) · Zbl 0967.93090
[22] Reif, K.; Unbehauen, R., The extended Kalman filter as an exponential observer for nonlinear systems, IEEE transactions on signal processing, 47, 8, 2324-2328, (1999) · Zbl 0972.93071
[23] Ristic, B., Farina, A., Benvenuti, D., & Arulampalam, M. S. (2003). Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry. IEE proceedings of the Radar Sonar Navigation, 150(2), 65-70.
[24] Tarn, T.J.; Rasis, Y., Observers for nonlinear stochastic systems, IEEE transactions on automatic control, AC-21, 441-448, (1976) · Zbl 0332.93075
[25] Tichavsky, P.; Muravchik, C.H.; Nehorai, A., Posterior cramér-Rao bounds for discrete-time nonlinear filtering, IEEE transactions on signal processing, 46, 5, 1386-1396, (1998)
[26] Wan, E. A. & van der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation [A]. Adaptive systems for signal processing, communications, and control symposium (pp. 153-158).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.