×

zbMATH — the first resource for mathematics

On the boundedness character of rational equations. II. (English) Zbl 1104.39002
[For part I see E. Camouzis, G. Ladas, F. Palladino and E. P. Quinn, ibid. 12, No. 5, 503–523 (2006; Zbl 1104.39003)].
A class of nonlinear difference equations in rational form with nonnegative coefficients and initial conditions is considered. Further results and conjectures are presented regarding the boundedness of solutions based on the theory developed by the authors in earlier papers.

MSC:
39A11 Stability of difference equations (MSC2000)
39A20 Multiplicative and other generalized difference equations
39A12 Discrete version of topics in analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/10236190500405166 · Zbl 1099.39003
[2] DOI: 10.1080/10236190410001726430 · Zbl 1055.39500
[3] DOI: 10.1080/10236190500272897 · Zbl 1090.39005
[4] DOI: 10.1080/10236190500035328 · Zbl 1228.39002
[5] DOI: 10.1080/10236190500539311 · Zbl 1104.39003
[6] DOI: 10.1080/10236190410001726449
[7] DOI: 10.1080/10236190500044197 · Zbl 1071.39502
[8] DOI: 10.1080/1023619021000042162 · Zbl 1049.39026
[9] DOI: 10.1016/S0362-546X(01)00586-7 · Zbl 1042.39523
[10] DOI: 10.1080/10236190500035401 · Zbl 1213.39001
[11] Grove E.A., Periodicities in Nonlinear Difference Equations (2005) · Zbl 1078.39009
[12] DOI: 10.1080/1023619021000054015 · Zbl 1038.39004
[13] DOI: 10.1080/10236190410001659732 · Zbl 1068.39012
[14] Kocic V.L., Global Asymptotic Behavior of Nonlinear Difference Equations of Higher Order with Applications (1993) · Zbl 0787.39001
[15] DOI: 10.1201/9781420035384
[16] DOI: 10.1080/10236190410001726458 · Zbl 1057.39505
[17] Wang Q., Journal of Difference Equations and Applications (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.