Projectively flat exponential Finsler metric. (English) Zbl 1104.53019

On an open domain of \(\mathbb R^n\) let be given a Riemannian metric \(\alpha \) and a 1-form \(\beta \). For a constant \(\varepsilon \) the function \(F=\alpha \exp(\frac{\beta }{\alpha }+\varepsilon \beta)\) is a Finsler metric called exponential. The main result: \(F\) is locally projectively flat if and only if \(\alpha \) is projectivelly flat and \(\beta \) is parallel with respect to \(\alpha \). Also, it is proved that the Douglas tensor of \(F\) vanishes if and only if \(\beta \) is parallel with respect to \(\alpha \). As consequence, an exponential Finsler metric of Douglas type is a Landsberg metric.
Reviewer: Radu Miron (Iaşi)


53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
Full Text: DOI


[1] Bácsó, S.; Matsumoto, M., On Finsler spaces of Douglas type: a generalization of the notion of bewald space, Publ. Math. Debrecen, 325, 385-406, (1997) · Zbl 0907.53045
[2] Bryant, R., Some remarks on Finsler manifolds with constant flag curvature, Houston J. Math, 28, 221-262, (2002) · Zbl 1027.53086
[3] Chen, X.; Shen, Z., On Douglas metrics, Publ. Math. Debrecen, 66, 503-512, (2005) · Zbl 1082.53023
[4] Chern, S.S., Shen, Z., 2005. Riemann-Finsler Geometry. World Scientific, p.33. · Zbl 1085.53066
[5] Hamel, G., 1993. Über die Geometrieen in denen die Geraden die kürzestensind. Math. Ann., 57(2):231-264. [doi:10.1007/BF01444348] · JFM 34.0527.01
[6] Matsumoto, M., Finler spaces with (α,β)-metrc of Douglas type, Tensor, N.S., 60, 123-134, (1998)
[7] Mo, X.; Shen, Z.; Yang, C., Some constructions of projectively flat Finsler metric, Science in China—Series A: Mathematics, 49, 703-714, (2006) · Zbl 1115.53048
[8] Senarath, P., Thornley, G. M., 2004. Locally Projectively Flat Finsler Spaces with (α,β)-Metric. http://www.natlib.govt.nz/files/bibliography/NZNB-1004.pdf.
[9] Shen, Z., Projectively flat Randers metrics of constant curvature, Math. Ann., 325, 19-30, (2003) · Zbl 1027.53096
[10] Shen, Z., 2004. Landsberg Curvature, \(S\)-curvature and Riemann Curvature, in a Sampler of Riemann-Finsler Geometry. MSRI Series Vol. 50. Cambridge University Press, p.303-355. · Zbl 1074.53063
[11] Shen, Z., Civi Yildirim, G., 2005. On a class of projectively flat metrics of constant flag curvature. Canadian J. of Math., in press. · Zbl 1157.53014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.