×

zbMATH — the first resource for mathematics

Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms. (English) Zbl 1104.70013

MSC:
70K44 Homoclinic and heteroclinic trajectories for nonlinear problems in mechanics
70H05 Hamilton’s equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1006/jdeq.1999.3639 · Zbl 0944.37030
[2] DOI: 10.1007/s002080050248 · Zbl 0927.35103
[3] DOI: 10.1007/s002090100383 · Zbl 1008.37040
[4] Cerami G., Istit. Lombardo Accad. Sci. Lett. Rend. A 112 pp 332–
[5] DOI: 10.1007/BF01444526 · Zbl 0731.34050
[6] DOI: 10.1090/S0894-0347-1991-1119200-3
[7] Dautray R., Mathematical Analysis and Numerical Methods for Science and Technology 3 (1990) · Zbl 0784.73001
[8] DOI: 10.1007/BF03036994
[9] DOI: 10.1016/S0362-546X(98)00204-1 · Zbl 0938.37034
[10] DOI: 10.1007/s000330050177 · Zbl 0997.37041
[11] DOI: 10.1007/BF01444543 · Zbl 0702.34039
[12] Kryszewski W., Adv. Differential Equations 3 pp 441– · Zbl 0725.34023
[13] Lions P. L., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 pp 223– · Zbl 0704.49004
[14] DOI: 10.1007/BF02570817 · Zbl 0725.58017
[15] Séré E., Ann. Inst. H. Poincaré Anal. Non Linéaire 10 pp 561–
[16] DOI: 10.1006/jfan.2001.3798 · Zbl 0984.37072
[17] DOI: 10.1016/0022-0396(91)90095-Q · Zbl 0787.34041
[18] DOI: 10.1007/978-1-4612-4146-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.