×

zbMATH — the first resource for mathematics

Strong convergence of the CQ method for fixed point iteration processes. (English) Zbl 1105.47060
Some strong convergence theorems for the CQ method Ishikawa iteration process for nonexpansive mappings, for the contractive-type iteration process for nonexpansive mappings, and for the proximal point algorithm for maximal monotone operators in Hilbert spaces are obtained.

MSC:
47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brezis, H., Operateurs maximaux monotones et semi-groups de contractions dans LES espaces de Hilbert, (1973), North-Holland Amsterdam · Zbl 0252.47055
[2] Byrne, C., A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse problems, 20, 103-120, (2004) · Zbl 1051.65067
[3] Chidume, C.E.; Mutangadura, S.A., An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. am. math. soc., 129, 2359-2363, (2001) · Zbl 0972.47062
[4] Genel, A.; Lindenstrass, J., An example concerning fixed points, Israel J. math., 22, 81-86, (1975) · Zbl 0314.47031
[5] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. · Zbl 0708.47031
[6] Güler, O., On the convergence of the proximal point algorithm for convex optimization, SIAM J. control optim., 29, 403-419, (1991) · Zbl 0737.90047
[7] Halpern, B., Fixed points of nonexpanding maps, Bull. am. math. soc., 73, 957-961, (1967) · Zbl 0177.19101
[8] Ishikawa, S., Fixed points by a new iteration method, Proc. am. math. soc., 44, 147-150, (1974) · Zbl 0286.47036
[9] Kamimura, S.; Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. optim., 13, 938-945, (2003) · Zbl 1101.90083
[10] Kim, T.; Xu, H.K., Strong convergence of modified Mann iterations, Nonlinear anal., 61, 51-60, (2005) · Zbl 1091.47055
[11] T. Kim, H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., this issue, doi:10.1016/j.na.2005.05.059.
[12] Lions, P.L., Approximation de points fixes de contractions, C.R. acad. sci. Sèr. A-B Paris, 284, 1357-1359, (1977) · Zbl 0349.47046
[13] Mann, W.R., Mean value methods in iteration, Proc. amer. math. soc., 4, 506-510, (1953) · Zbl 0050.11603
[14] Marino, G.; Xu, H.K., Convergence of generalized proximal point algorithms, Comm. appl. anal., 3, 791-808, (2004) · Zbl 1095.90115
[15] Nakajo, K.; Takahashi, W., Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. math. anal. appl., 279, 372-379, (2003) · Zbl 1035.47048
[16] Reich, S., Weak convergence theorems for nonexpansive mappings in Banach spaces, J. math. anal. appl., 67, 274-276, (1979) · Zbl 0423.47026
[17] Reich, S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. math. anal. appl., 75, 287-292, (1980) · Zbl 0437.47047
[18] Rockafellar, R.T., Monotone operators and the proximal point algorithm, SIAM J. control optim., 14, 877-898, (1976) · Zbl 0358.90053
[19] Schu, J., Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. austral. math. soc., 43, 153-159, (1991) · Zbl 0709.47051
[20] Shioji, N.; Takahashi, W., Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. am. math. soc., 125, 3641-3645, (1997) · Zbl 0888.47034
[21] Solodov, M.V.; Svaiter, B.F., Forcing strong convergence of proximal point iterations in a Hilbert space, Math. programming ser. A, 87, 189-202, (2000) · Zbl 0971.90062
[22] Tan, K.K.; Xu, H.K., Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. math. anal. appl., 178, 2, 301-308, (1993) · Zbl 0895.47048
[23] Tan, K.K.; Xu, H.K., Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. am. math. soc., 122, 733-739, (1994) · Zbl 0820.47071
[24] Wittmann, R., Approximation of fixed points of nonexpansive mappings, Arch. math., 58, 486-491, (1992) · Zbl 0797.47036
[25] Xu, H.K., Iterative algorithms for nonlinear operators, J. London math. soc., 66, 240-256, (2002) · Zbl 1013.47032
[26] Xu, H.K., Remarks on an iterative method for nonexpansive mappings, Comm. appl. nonlinear anal., 10, 1, 67-75, (2003) · Zbl 1035.47035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.