zbMATH — the first resource for mathematics

Decompounding: an estimation problem for Poisson random sums. (English) Zbl 1105.62309
Summary: Given a sample from a compound Poisson distribution, we consider estimation of the corresponding rate parameter and base distribution. This has applications in insurance mathematics and queueing theory. We propose a plug-in type estimator that is based on a suitable inversion of the compounding operation. Asymptotic results for this estimator are obtained via a local analysis of the decompounding functional.

62F15 Bayesian inference
62P05 Applications of statistics to actuarial sciences and financial mathematics
62M99 Inference from stochastic processes
Full Text: DOI Euclid
[1] ASMUSSEN, S. (1987). Applied Probability and Queues. Wiley, Chichester. · Zbl 0624.60098
[2] ASMUSSEN, S. (1989). Risk theory in a Markovian environment. Scand. Actuarial J. 69-100. · Zbl 0684.62073
[3] BEARD, R. E., PENTIKÄINEN, T. and PESONEN, E. (1984). Risk Theory: The Stochastic Basis of Insurance, 3rd ed. Chapman and Hall, London. · Zbl 0532.62081
[4] BHAT, U. N., MILLER, G. K. and SUBBA RAO, S. (1997). Statistical analysis of queueing sy stems. In Frontiers in Queueing (J. H. Dshalalow, ed.) 351-394. CRC Press, Boca Raton, FL. · Zbl 0871.62069
[5] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[6] BUCHMANN, B. (2001). Decompounding: An estimation problem for the compound Poisson distribution. Ph.D. thesis, Univ. Hannover.
[7] DUDLEY, R. M. (1999). Uniform Central Limit Theorems. Cambridge Univ. Press. · Zbl 0951.60033
[8] EMBRECHTS, P., GRÜBEL, R. and PITTS, S. M. (1993). Some applications of the fast Fourier transform algorithm in insurance mathematics. Statist. Neerlandica 47 59-75. · Zbl 0764.62089
[9] GRANDELL, J. (1991). Aspects of Risk Theory. Springer, New York. · Zbl 0717.62100
[10] GRÜBEL, R. and HERMESMEIER, R. (1999). Computation of compound distributions. I. Aliasing errors and exponential tilting. ASTIN Bulletin 29 197-214.
[11] GRÜBEL, R. and PITTS, S. M. (1993). Nonparametric estimation in renewal theory. I. The empirical renewal function. Ann. Statist. 21 1431-1451. · Zbl 0818.62037
[12] GRÜBEL, R. and PITTS, S. M. (2000). Statistical aspects of perpetuities. J. Multivariate Anal. 75 143-162. · Zbl 0981.62029
[13] JOHNSON, N. L., KOTZ, S. and KEMP, A. W. (1992). Univariate Discrete Distributions, 2nd ed. Wiley, New York.
[14] KARR, A. F. (1986). Point Processes and Their Statistical Inference. Dekker, New York. · Zbl 0601.62120
[15] KLAR, B. (1999). Goodness-of-fit tests for discrete models based on the integrated distribution function. Metrika 49 53-69. · Zbl 1093.62533
[16] PITTS, S. M. (1994a). Nonparametric estimation of compound distributions with applications in insurance. Ann. Inst. Statist. Math. 46 537-555. · Zbl 0817.62024
[17] PITTS, S. M. (1994b). Nonparametric estimation of the stationary waiting time distribution function for the GI/G/1 queue. Ann. Statist. 22 1428-1446. · Zbl 0824.60095
[18] POLITIS, K. and PITTS, S. M. (2000). Nonparametric estimation in renewal theory. II. Solutions of renewal-ty pe equations. Ann. Statist. 28 88-115. · Zbl 1106.60311
[19] POLLARD, D. (1984). Convergence of Stochastic Processes. Springer, New York. · Zbl 0544.60045
[20] QUINE, M. P. and SENETA, E. (1987). Bortkiewicz’s data and the law of small numbers. Int. Statist. Rev. 55 173-181. JSTOR: · Zbl 0622.62003
[21] SHORACK, G. R. and WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365
[22] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes. Springer, Berlin. · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.