zbMATH — the first resource for mathematics

Convergence rates of posterior distributions. (English) Zbl 1105.62315
Summary: We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinite-dimensional statistical models. We give general results on the rate of convergence of the posterior measure. These are applied to several examples, including priors on finite sieves, log-spline models, Dirichlet processes and interval censoring.

62F15 Bayesian inference
62E20 Asymptotic distribution theory in statistics
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI Euclid
[1] Barron, A., Schervish, M. J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. Ann. Statist. 27 536-561. · Zbl 0980.62039
[2] Birgé, L. (1983). Approximation dans les espaces métriques et théorie de l’estimation. Z. Wahrsch. Verw. Gebiete 65 181-238. · Zbl 0506.62026
[3] Birgé, L. (1984). Sur un théor eme de minimax et son application aux tests. Probab. Math. Statist. 3 259-282. · Zbl 0571.62036
[4] Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150. · Zbl 0805.62037
[5] Birgé, L. and Massart, P. (1997). From model selection to adaptive estimation. In Festschrift for Lucien Le Cam (G. Yang and D. Pollard, eds.) 55-87. Springer, New York. · Zbl 0920.62042
[6] Birgé, L. and Massart, P. (1998). Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 329-375. · Zbl 0954.62033
[7] de Boor, C. (1978). A Practical Guide to Splines. Springer, New York. · Zbl 0406.41003
[8] Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates (with discussion). Ann. Statist. 14 1-67. · Zbl 0595.62022
[9] Doob, J. L. (1949). Le Calcul des Probabilités et ses Applications. Coll. Int. du CNRS 13 23-27.
[10] Dudley, R. M. (1984). A course on empirical processes. Lectures Notes in Math. 1097 2-141. Springer, Berlin. · Zbl 0554.60029
[11] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037
[12] Ferguson, T. S. (1974). Prior distribution on the spaces of probability measures. Ann. Statist. 2 615-629. · Zbl 0286.62008
[13] Freedman, D. A. (1963). On the asymptotic behavior of Bayes’ estimates in the discrete case. Ann. Math. Statist. 34 1194-1216.
[14] Freedman, D. A. (1965). On the asymptotic behavior of Bayes’ estimates in the discrete case II. Ann. Math. Statist. 36 454-456. · Zbl 0137.12603
[15] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1997). Non-informative priors via sieves and packing numbers. In Advances in Statistical Decision Theory and Applications (S. Panchapakeshan and N. Balakrishnan eds.) 129-140. Birkhäuser, Boston. Ghosal, S., Ghosh, J. K. and Ramamoorthi R. V. (1999a). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143-158. Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999b). Consistency issues in Bayesian nonparametrics. In Asymptotics, Nonparametrics and Time Series: A Tribute to Madan Lal Puri (Subir Ghosh, ed.) 639-667. Dekker, New York. · Zbl 0932.62043
[16] Ibragimov, I. A. and Has’minskii, R. Z. (1981). Statistical Estimation: Asymptotic Theory. Springer, New York.
[17] Kolmogorov, A. N. and Tikhomirov, V. M. (1961). Epsilon-entropy and epsilon-capacity of sets in function spaces. Amer. Math. Soc. Trans. Ser. 2 17 277-364. · Zbl 0133.06703
[18] Le Cam, L. M. (1973). Convergence of estimates under dimensionality restrictions. Ann. Statist. 1 38-53. · Zbl 0255.62006
[19] Le Cam, L. M. (1986). Asymptotic Methods in Statistical Decision Theory. Springer, New York. · Zbl 0605.62002
[20] Le Cam, L. M. and Yang, G. (1990). Asymptotics in Statistics: Some Basic Concepts. Springer, New York. · Zbl 0719.62003
[21] Pollard, D. (1990). Empirical Processes: Theory and Applications. IMS, Hayward, CA and Amer. Statist. Assoc., Alexandria, VA. · Zbl 0741.60001
[22] Schwartz, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete 4 10-26. · Zbl 0158.17606
[23] Shen, X. and Wasserman, L. (1999). Rates of convergence of posterior distributions. · Zbl 1041.62022
[24] Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590-606. · Zbl 0603.62050
[25] Stone, C. J. (1990). Large-sample inference for log-spline models. Ann. Statist. 18 717-741. · Zbl 0712.62036
[26] Stone, C. J. (1994). The use of polynomial splines and their tensor products in multivariate function estimation (with discussion). Ann. Statist. 22 118-184. · Zbl 0827.62038
[27] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York. · Zbl 0862.60002
[28] Wasserman, L. (1998). Asymptotic properties of nonparametric Bayesian procedures. Practical Nonparametric and Semiparametric Bayesian Statistics. Lecture Notes in Statist. 133 293-304. Springer, New York. · Zbl 0918.62045
[29] Wong, W. H. and Shen, X. (1995). Probability inequalities for likelihood ratios and convergence rates of sieve MLEs. Ann. Statist. 23 339-362. · Zbl 0829.62002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.