×

zbMATH — the first resource for mathematics

The syntomic regulator for the \(K\)-theory of fields. (English) Zbl 1106.11024
Summary: We define complexes analogous to Goncharov’s complexes for the \(K\)-theory of discrete valuation rings of characteristic zero. Under suitable assumptions in \(K\)-theory, there is a map from the cohomology of those complexes to the \(K\)-theory of the ring under consideration. In case the ring is a localization of the ring of integers in a number field, there are no assumptions necessary. We compute the composition of our map to the \(K\)-theory with the syntomic regulator. The result can be described in terms of a \(p\)-adic polylogarithm. Finally, we apply our theory in order to compute the regulator to syntomic cohomology on Beilinson’s cyclotomic elements. The result is again given by the \(p\)-adic polylogarithm. This last result is related to one by Somekawa and generalizes work by Gros.

MSC:
11G55 Polylogarithms and relations with \(K\)-theory
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML arXiv
References:
[1] Berthelot P. , Finitude et pureté cohomologique en cohomologie rigide , Invent. Math. 128 ( 2 ) ( 1997 ) 329 - 377 , with an appendix in English by A.J. de Jong. MR 1440308 | Zbl 0908.14005 · Zbl 0908.14005
[2] Besser A. , Syntomic regulators and p -adic integration I: rigid syntomic regulators , Israel J. Math. 120 ( 2000 ) 291 - 334 . MR 1809626 | Zbl 1001.19003 · Zbl 1001.19003
[3] Besser A. , Syntomic regulators and p -adic integration II: K 2 of curves , Israel J. Math. 120 ( 2000 ) 335 - 360 . MR 1809627 | Zbl 1001.19004 · Zbl 1001.19004
[4] Besser A. , Coleman integration using the Tannakian formalism , Math. Ann. 322 ( 1 ) ( 2002 ) 19 - 48 . MR 1883387 | Zbl 1013.11028 · Zbl 1013.11028
[5] Besser A. , Finite and p -adic polylogarithms , Compositio Math. 130 ( 2 ) ( 2002 ) 215 - 223 . MR 1883819 | Zbl 1062.11041 · Zbl 1062.11041
[6] Brown K.S. , Gersten S.M. , Algebraic K -theory as generalized sheaf cohomology , in: Algebraic K -Theory, I: Higher K -Theories , Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972 , Lecture Notes in Math. , vol. 341 , Springer-Verlag , Berlin , 1973 , pp. 266 - 292 . MR 347943 | Zbl 0291.18017 · Zbl 0291.18017
[7] Burgos Gil J.I. , The Regulators of Beilinson and Borel , CRM Monogr. Ser. , vol. 15 , Amer. Math. Soc , Providence, RI , 2002 . MR 1869655 | Zbl 0994.19003 · Zbl 0994.19003
[8] Borel A. , Cohomologie de SL n et valeurs de fonctions zeta aux points entiers , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 ( 4 ) ( 1977 ) 613 - 636 , Errata at vol. 7 , p. 373 (1980). Numdam | MR 506168 | Zbl 0382.57027 · Zbl 0382.57027
[9] Coleman R. , de Shalit E. , p -adic regulators on curves and special values of p -adic L -functions , Invent. Math. 93 ( 2 ) ( 1988 ) 239 - 266 . MR 948100 | Zbl 0655.14010 · Zbl 0655.14010
[10] Chiarellotto B. , Weights in rigid cohomology applications to unipotent F -isocrystals , Ann. Sci. École Norm. Sup. (4) 31 ( 5 ) ( 1998 ) 683 - 715 . Numdam | MR 1643966 | Zbl 0933.14008 · Zbl 0933.14008
[11] Coleman R. , Dilogarithms, regulators, and p -adic L -functions , Invent. Math. 69 ( 1982 ) 171 - 208 . MR 674400 | Zbl 0516.12017 · Zbl 0516.12017
[12] de Jeu R. , Zagier’s conjecture and wedge complexes in algebraic K -theory , Compositio Math. 96 ( 2 ) ( 1995 ) 197 - 247 . Numdam | MR 1326712 | Zbl 0868.19002 · Zbl 0868.19002
[13] de Jeu R. , On K (3) 4 of curves over number fields , Invent. Math. 125 ( 3 ) ( 1996 ) 523 - 556 . MR 1400316 | Zbl 0864.11059 · Zbl 0864.11059
[14] de Jeu R. , Towards regulator formulae for the K -theory of curves over number fields , Compositio Math. 124 ( 2 ) ( 2000 ) 137 - 194 . MR 1804201 | Zbl 0985.19002 · Zbl 0985.19002
[15] Elbaz-Vincent P. , Gangl H. , On poly(ana)logs. I , Compositio Math. 130 ( 2 ) ( 2002 ) 161 - 210 . MR 1883818 | Zbl 1062.11042 · Zbl 1062.11042
[16] Gillet H. , Riemann-Roch theorems for higher algebraic K -theory , Adv. Math. 40 ( 1981 ) 203 - 288 . MR 624666 | Zbl 0478.14010 · Zbl 0478.14010
[17] Gillet H. , Soulé C. , Filtrations on higher algebraic K -theory , in: Algebraic K -Theory, Seattle, WA, 1997 , Proc. Sympos. Pure Math. , vol. 67 , Amer. Math. Soc , Providence, RI , 1999 , pp. 89 - 148 . MR 1743238 | Zbl 0951.19003 · Zbl 0951.19003
[18] Gros M. , Régulateurs syntomiques et valeurs de fonctions L p -adiques. II , Invent. Math. 115 ( 1 ) ( 1994 ) 61 - 79 . MR 1248079 | Zbl 0799.14010 · Zbl 0799.14010
[19] Harder G. , Die Kohomologie S -arithmetischer Gruppen über Funktionenkörpern , Invent. Math. 42 ( 1977 ) 135 - 175 . MR 473102 | Zbl 0391.20036 · Zbl 0391.20036
[20] Huber A. , Wildeshaus J. , Classical motivic polylogarithm according to Beilinson and Deligne , Doc. Math. 3 ( 1998 ) 27 - 133 , electronic. MR 1643974 | Zbl 0906.19004 · Zbl 0906.19004
[21] Kontsevich M. , The 11/2-logarithm , Compositio Math. 130 ( 2 ) ( 2002 ) 211 - 214 , Appendix to [15]. MR 1884238
[22] Milne J.S. , Étale Cohomology , Princeton Univ. Press , Princeton, NJ , 1980 . MR 559531 | Zbl 0433.14012 · Zbl 0433.14012
[23] Quillen D. , Higher algebraic K -theory. I , in: Algebraic K -Theory, I: Higher K -Theories , Lecture Notes in Math. , vol. 341 , Springer-Verlag , Berlin , 1973 , pp. 85 - 147 . MR 338129 | Zbl 0292.18004 · Zbl 0292.18004
[24] Schneider P. , Introduction to the Beilinson conjectures , in: Beilinson’s Conjectures on Special Values of L -Functions , Academic Press , Boston, MA , 1988 , pp. 1 - 35 . MR 944989 | Zbl 0673.14007 · Zbl 0673.14007
[25] Théorie des topos et cohomologie étale des schémas, Tome 1: Théorie des topos , Séminaire de géométrie algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier, avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat , Lecture Notes in Math. , vol. 269 , Springer-Verlag , Berlin , 1972 . MR 354652 | Zbl 0256.18008 · Zbl 0256.18008
[26] Somekawa M. , Log-syntomic regulators and p -adic polylogarithms , 17 ( 3 ) ( 1999 ) 265 - 294 . MR 1703301 | Zbl 0978.19004 · Zbl 0978.19004
[27] Wojtkowiak Z. , A note on functional equations of the p -adic polylogarithms , Bull. Soc. Math. France 119 ( 3 ) ( 1991 ) 343 - 370 . Numdam | MR 1125671 | Zbl 0748.12006 · Zbl 0748.12006
[28] Zagier D. , Polylogarithms, Dedekind zeta functions and the algebraic K -theory of fields , in: Arithmetic Algebraic Geometry (Texel, 1989) , Progr. Math. , vol. 89 , Birkhäuser Boston , Boston, MA , 1991 , pp. 391 - 430 . MR 1085270 | Zbl 0728.11062 · Zbl 0728.11062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.