zbMATH — the first resource for mathematics

General notions of statistical depth function. (English) Zbl 1106.62334
Summary: Statistical depth functions are being formulated ad hoc with increasing popularity in nonparametric inference for multivariate data. Here we introduce several general structures for depth functions, classify many existing examples as special cases, and establish results on the possession, or lack thereof, of four key properties desirable for depth functions in general. Roughly speaking, these properties may be described as: affine invariance, maximality at center, monotonicity relative to deepest point, and vanishing at infinity. This provides a more systematic basis for selection of a depth function. In particular, from these and other considerations it is found that the half-space depth behaves very well overall in comparison with various competitors.

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G99 Nonparametric inference
AS 307
Full Text: DOI Euclid
[1] Arcones, M. A. and Giné, E. (1993). Limit theorems for U-processes. Ann. Probab. 21 1494-1542. · Zbl 0789.60031 · doi:10.1214/aop/1176989128
[2] Baggerly, K. A. and Scott, D. W. (1999). Comment on ”Multivariate analysis by data depth: Descriptive statistics, graphics and inference,” by R. Y. Liu, J. M. Parelius and K. Singh. Ann. Statist. 27 843-844. · Zbl 0984.62037 · doi:10.1214/aos/1018031260
[3] Bartoszy ński, R., Pearl, D. K. and Lawrence, J. (1997). A multidimensional goodness-of-fit test based on interpoint distances. J. Amer. Statist. Assoc. 92 577-586. · Zbl 0887.62046 · doi:10.2307/2965706
[4] Beran, R. J. and Millar, P. W. (1997). Multivariate symmetry models. In Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (D. Pollard, E. Torgerson and G. L. Yang, eds.) 13-42. Springer, Berlin. · Zbl 0948.62039
[5] Caplin, A. and Nalebuff, B. (1988). On 64%-majority rule. Econometrica 56 787-814. Caplin, A. and Nalebuff, B. (1991a). Aggregation and social choice: A mean voter theorem. Econometrica 59 1-23. Caplin, A. and Nalebuff, B. (1991b). Aggregation and imperfect competition: On the existence of equilibrium. Econometrica 59 25-59. · Zbl 0644.90006
[6] Carrizosa, E. (1996). A characterization of halfspace depth. J. Multivariate Anal. 58 21-26. · Zbl 0865.62036 · doi:10.1006/jmva.1996.0037
[7] Chamberlin, E. (1937). The Theory of Monopolistic Competition. Harvard Univ. Press.
[8] Chen, Z. (1995). Bounds for the breakdown point of the simplicial median. J. Multivariate Anal. 55 1-13. · Zbl 0898.62041 · doi:10.1006/jmva.1995.1063
[9] Donoho, D. L. (1982). Breakdown properties of multivariate location estimators. Ph. D. qualifying paper, Dept. Statistics, Harvard Univ.
[10] Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 1803-1827. · Zbl 0776.62031 · doi:10.1214/aos/1176348890
[11] D ümbgen, L. (1990). Limit theorems for the empirical simplicial depth. Statist. Probab. Lett. 14 119-128. · Zbl 0758.60030
[12] Eddy, W. F. (1985). Ordering of multivariate data. In Computer Science and Statistics: The Interface (L. Billard, ed.) 25-30. North-Holland, Amsterdam.
[13] Fraiman, R. and Meloche, J. (1996). Multivariate L-estimation.
[14] Fraiman, R., Liu, R. Y. and Meloche, J. (1997). Multivariate density estimation by probing depth. In L1-Statistical Procedures and Related Topics (Y. Dodge, ed.) 415-430. IMS, Hayward, CA. · Zbl 0919.62050
[15] He, X. and Wang, G. (1997). Convergence of depth contours for multivariate datasets. Ann. Statist. 25 495-504. · Zbl 0873.62053 · doi:10.1214/aos/1031833661
[16] Hotelling, H. (1929). Stability in competition. Econom. J. 39 41-57.
[17] Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions. Ann. Statist. 25 1998-2017. · Zbl 0881.62059 · doi:10.1214/aos/1069362382
[18] Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. 18 405-414. · Zbl 0701.62063 · doi:10.1214/aos/1176347507
[19] Liu, R. Y. (1992). Data depth and multivariate rank tests. In L1-Statistics and Related Methods (Y. Dodge, ed.) 279-294. North-Holland, Amsterdam.
[20] Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion). Ann. Statist. 27 783-858. · Zbl 0984.62037 · doi:10.1214/aos/1018031260
[21] Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank tests. J. Amer. Statist. Assoc. 88 252-260. · Zbl 0772.62031 · doi:10.2307/2290720
[22] Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. Nat. Acad. Sci. India 12 49-55. · Zbl 0015.03302
[23] Massé, J. C. and Theodorescu, R. (1994). Halfplane trimming for bivariate distributions. J. Multivariate Anal. 48 188-202. · Zbl 0790.60024 · doi:10.1006/jmva.1994.1002
[24] Mizera, I. (1998). On depth and deep points: a calculus. · Zbl 1039.62046
[25] Mosteller, C. F. and Tukey, J. W. (1977). Data Analysis and Regression. Addison-Wesley, Reading, MA.
[26] Niinimaa, A., Oja, H. and Tableman, M. (1990). On the finite sample breakdown point of the Oja bivariate median and of the corresponding half-samples version. Statist. Probab. Lett. 10 325-328. · Zbl 0712.62046 · doi:10.1016/0167-7152(90)90050-H
[27] Nolan, D. (1992). Asymptotics for multivariate trimming. Stochastic Process. Appl. 42 157-169. · Zbl 0763.62007 · doi:10.1016/0304-4149(92)90032-L
[28] Oja, H. (1983). Descriptive statistics for multivariate distributions. Statist. Probab. Lett. 1 327- 333. · Zbl 0517.62051 · doi:10.1016/0167-7152(83)90054-8
[29] Rao, C. R. (1988). Methodology based on the L1 norm in statistical inference. Sankhy\?a Ser. A 50 289-313. · Zbl 0677.62058
[30] Rousseeuw, P. J. and Hubert, M. (1999). Regression depth (with discussion). J. Amer. Statist. Assoc. 94 388-433. · Zbl 1007.62060
[31] Rousseeuw, P. J. and Ruts, I. (1996). Bivariate location depth. J. Roy. Statist. Soc. Ser. C 45 516-526. · Zbl 0905.62002 · doi:10.2307/2986073
[32] Rousseeuw, P. J. and Struyf, A. (1998). Computing location depth and regression depth in higher dimensions. Statist. Comput. 8 193-203.
[33] Ruts, I. and Rousseeuw, P. J. (1996). Computing depth contours of bivariate point clouds. Comput. Statist. Data Anal. 23 153-168. · Zbl 0900.62337 · doi:10.1016/S0167-9473(96)00027-8
[34] Serfling, R. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. · Zbl 0538.62002
[35] Singh, K. (1991). A notion of majority depth.
[36] Small, C. G. (1987). Measures of centrality for multivariate and directional distributions. Canad. J. Statist. 15 31-39. · Zbl 0622.62054 · doi:10.2307/3314859
[37] Small, C. G. (1990). A survey of multidimensional medians. Internat. Statist. Inst. Rev. 58 263- 277.
[38] Stahel, W. A. (1981). Robust estimation: infinitesimal optimality and covariance matrix estimators. Ph. D thesis, ETH, Zurich (in German).
[39] Tukey, J. W. (1975). Mathematics and picturing data. In Proceedings of the International Congress on Mathematics (R. D. James, ed.) 2 523-531 Canadian Math. Congress. · Zbl 0347.62002
[40] Tyler, D. E. (1994). Finite sample breakdown points of projection based multivariate location and scatter statistics. Ann. Statist. 22 1024-1044. · Zbl 0815.62015 · doi:10.1214/aos/1176325510
[41] Vardi, Y. and Zhang, C.-H. (1999). The multivariate L1-median and associated data depth.
[42] Yeh, A. B. and Singh, K. (1997). Balanced confidence regions based on Tukey’s depth and the bootstrap. J. Roy. Statist. Soc. Ser. B 59 639-652. · Zbl 1090.62539
[43] Zuo, Y. (1999). Affine equivariant multivariate location estimates with best possible breakdown points. Preprint. Zuo, Y. and Serfling, R. (2000a). Nonparametric notions of multivariate ”scatter measure” and ”more scattered” based on statistical depth functions. J. Multivariate Anal.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.