Approximations of the Navier–Stokes equations for high Reynolds number flows past a solid wall. (English) Zbl 1107.76024

Summary: Approximations of the Navier–Stokes equations at high Reynolds number near solid boundaries are studied by using a method of successive complementary expansions. The starting point of the method is to look for a uniformly valid nonregular approximation. No matching principle is required to construct the approximation. The application of this method leads rigorously to the theory of interactive boundary layer which relies upon generalized boundary layer equations strongly coupled to the inviscid equations for the outer stream.
It is shown that the interactive boundary layer model contains the Prandtl boundary layer model and the triple deck model. These two models are two different regular expansions of the interactive boundary layer which are deduced asymptotically, i.e., when the Reynolds number goes to infinity.
Applications of the interactive boundary layer model to boundary layers influenced by external vorticity are presented and compared with Navier–Stokes solutions.


76D05 Navier-Stokes equations for incompressible viscous fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
34E05 Asymptotic expansions of solutions to ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
Full Text: DOI


[1] Aupoix, B.; Brazier, J.Ph.; Cousteix, J., Asymptotic defect boundary-layer theory applied to hypersonic flows, Aiaa j., 30, 5, 1252-1259, (1992) · Zbl 0756.76038
[2] J.Ph. Brazier, Étude asymptotique des équations de couche limite en formulation déficitaire, Ph.D. Theis, École Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, 1990.
[3] Brazier, J.Ph.; Aupoix, B.; Cousteix, J., Étude asymptotique de la couche limite en formulation déficitaire, C. R. acad. sci. Sér. II, t. 310, 1583-1588, (1990) · Zbl 0699.76047
[4] J.E. Carter, A new boundary layer inviscid iteration technique for separated flow, In: AIAA Paper 79-1450, Fourth Computational Fluid Dynamics Conference, Williamsburg, 1979.
[5] Cebeci, T., An engineering approach to the calculation of aerodynamic flows, (1999), Horizons and Springer Long Beach and Berlin · Zbl 0959.76001
[6] DeJarnette, F.R.; Radcliffe, R.A., Matching inviscid/boundary-layer flowfields, Aiaa j., 34, 1, 35-42, (1996) · Zbl 0896.76082
[7] Dumitrescu, H.; Cardoş, V., Improved formulation of boundary-layer-type flows, Aiaa j., 40, 4, 794-796, (2002)
[8] Le Balleur, J.C., Couplage visqueux – non visqueuxanalyse du problème incluant décollements et ondes de choc, Rech. Aérospat., 6, 349-358, (1977) · Zbl 0376.76052
[9] Mahony, J.J., An expansion method for singular perturbation problems, J. austral. math. soc., 2, 440-463, (1962) · Zbl 0178.45003
[10] Mauss, J.; Cousteix, J., Uniformly valid approximation for singular perturbation problems and matching principle, C. R. Mécanique, 330, 10, 697-702, (2002) · Zbl 1177.76343
[11] Messiter, A.F., Boundary-layer flow near the trailing edge of a flat plate, SIAM J. appl. math., 18, 241-257, (1970) · Zbl 0195.27701
[12] Neyland, V.YA., Towards a theory of separation of the laminar boundary-layer in supersonic stream, Izv. akad. nauk. SSSR mekh. zhidk. gaza., 4, 33-35, (1969)
[13] O’Malley, R.E., Introduction to singular perturbations, Applied mathematics and mechanics, Vol. 14, (1974), Academic Press New York, London · Zbl 0287.34062
[14] L. Prandtl, Űber Flűßigkeitsbewegung bei sehr kleiner Reibung, Proceedings of the Third International Mathematical Congress, Heidelberg, 1904, pp. 484-491.
[15] Schlichting, H.; Gersten, K., Boundary layer theory, (2000), Springer Berlin, Heidelberg, New York
[16] I.J. Sobey, Introduction to interactive boundary layer theory, Oxford Applied and Engineering Mathematics, Oxford University Press, Oxford, 2000. · Zbl 0977.76003
[17] Stewartson, K.; Williams, P.G., Self induced separation, Proc. roy. soc. A, 312, 181-206, (1969) · Zbl 0184.52903
[18] Sychev, V.V.; Ruban, A.I.; Sychev, Vic.V.; Korolev, G.L., Asymptotic theory of separated flows, (1998), Cambridge University Press Cambridge, UK · Zbl 0944.76003
[19] Tillett, J.P.K., On the laminar flow in a free jet of liquid at high Reynolds numbers, J. fluid mech., 32, Part 2, 273-292, (1968) · Zbl 0159.58203
[20] Van Dyke, M., Higher approximations in boundary-layer theory. part 1. general analysis, J. fluid mech., 14, 161-177, (1962)
[21] Van Dyke, M., Higher approximations in boundary-layer theory. part 2. application to leading edges, J. fluid mech., 14, 481-495, (1962) · Zbl 0113.41203
[22] Van Dyke, M., Perturbation methods in fluid mechanics, (1964), Academic Press New York · Zbl 0136.45001
[23] Veldman, A.E.P., New, quasi-simultaneous method to calculate interacting boundary layers, Aiaa j., 19, 1, 79-85, (1981) · Zbl 0451.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.