Transformation formula of the “second order” mock theta function. (English) Zbl 1109.33020

Summary: We give a transformation formula for the “second order” mock theta function \[ D_5(q) = \sum_{n=0}^{\infty}\frac{(-q)_n}{(q;q^2)_{n+1}}q^n \] which was recently proposed in connection with the quantum invariant for the Seifert manifold


33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
11F27 Theta series; Weil representation; theta correspondences
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
Full Text: DOI arXiv


[1] Andrews G.E. (1966). q-identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33:575–582 · Zbl 0152.05202
[2] Andrews G.E. (1981). Mordell integrals and Ramanujan’s ”lost” notebook. In: Knopp M.I (eds). Analytic number theory, Lecture notes in mathematics vol 899. Springer, Berlin Heidelberg New York, pp. 10–48 · Zbl 0482.33002
[3] Andrews G.E., Berndt B.C. (2005). Ramanujan’s lost notebook part I. Springer, Berlin Heidelberg New York · Zbl 1075.11001
[4] Fine N.J. (1988). Basic hypergeometric series and applications. Mathematical survey monographs no. 27, AMS, Providence
[5] Hardy G.H., Aiyar P.V.S., Wilson B.M (eds). (2000). Collected papers of Srinivasa Ramanujan. American Mathematical Society, Providence
[6] Hikami, K.: On the quantum invariant for the spherical Seifert manifold, preprint (2005) math-ph/0504082
[7] Hikami K. (2005). Mock (false) theta functions as quantum invariants. Regular & Chaotic Dynamics 10:509–530 · Zbl 1133.57301
[8] Lawrence R., Zagier D. (1999). Modular forms and quantum invariants of 3-manifolds. Asian J Math 3:93–107 · Zbl 1024.11028
[9] Milnor J. (1975). On the 3-dimensional Brieskorn manifolds M(p,q,r). In: Neuwirth L.P (eds). Knots, groups, and 3-manifolds. Princeton University Press, Princeton, pp. 175–225 papers Dedicated to the Memory of R. H. Fox · Zbl 0305.57003
[10] Montesinos J.M. (1987). Classical tessellations and three-manifolds. Springer, Berlin Heidelberg New York · Zbl 0626.57002
[11] Mordell L.J. (1933). The definite integral \(\int_{-\infty}^\infty \frac{e^{a x^2+bx}}{e^{cx}+d} dx\) and the analytic theory of numbers. Acta Math. 61:323–360 · Zbl 0008.05501
[12] Ramanujan S. (1987). The lost notebook and other unpublished papers. Narosa, New Delhi · Zbl 0639.01023
[13] Reshetikhin N.Yu., Turaev V.G. (1991). Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103:547–597 · Zbl 0725.57007
[14] Watson G.N. (1936). The final problem: an account of the mock theta functions. J. London Math. Soc. 11:55–80 · Zbl 0013.11502
[15] Witten E. (1989). Quantum field theory and Jones’ polynomial. Commun. Math. Phys. 121:351–399 · Zbl 0667.57005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.