zbMATH — the first resource for mathematics

Stabilizing a class of time delay systems using the Hermite–Biehler theorem. (English) Zbl 1109.93363
The paper contains the applicable form of a Hermite-Biehler type theorem for the quasi-polynomial \[ f(s) = \sum_{j=1}^{n}\exp(\lambda_{j}s)P_{j}(s) \] \(\lambda_{j}\) being some real numbers.

93D15 Stabilization of systems by feedback
93C23 Control/observation systems governed by functional-differential equations
Full Text: DOI
[1] Bhattacharyya, S.P.; Chapellat, H.; Keel, L.H., Robust control: the parametric approach, (1995), Prentice-Hall Englewood Cliffs, NJ · Zbl 0838.93008
[2] A. Bülent Özguler, A. Aydn Koçan, An Analytic Determination of Stabilizing Feedback Gains, Report Nr. 321, Institutfür Dynamische Systeme, Universität Bremen, 1994
[3] Ho, M.T.; Datta, A.; Bhattacharyya, S.P., Generalizations of the hermite – biehler theorem, Linear algebra appl., 302-303, 135-153, (1999) · Zbl 0949.15037
[4] Pontryagin, L.S., On the zeros of some elementary transcendental functions, English translation, Amer. math. soc., 2, 95-110, (1955) · Zbl 0068.05803
[5] ()
[6] Bellman, R.; Cooks, K.L., Differential-difference equations, (1963), Academic Press Inc London
[7] Kharitonov, V.L.; Zhabko, A.P., Robust stability of time delay systems, IEEE trans. automat. contr., 39, 12, 2388-2397, (1994) · Zbl 0811.93042
[8] G.J. Silva, A. Datta, S.P. Bhattacharyya, Stabilization of Time Delay Systems, American Control Conference 2000, pp. 963-970
[9] M.T. Ho, A. Datta, S.P. Bhattacharyya, A Linear Programming Characterization of all Stabilizing PID Controllers, American Control Conference 1997, pp. 3922-3928
[10] Gantmacher, F.R., The theory of matrices, (1959), Chelsea Publishing Company New York · Zbl 0085.01001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.