×

Bayesian Poisson log-bilinear mortality projections. (English) Zbl 1110.62142

Summary: Mortality projections are major concerns for public policy, social security and private insurance. This paper implements a Bayesian log-bilinear Poisson regression model to forecast mortality. Computations are carried out using Markov Chain Monte Carlo methods in which the degree of smoothing is learnt from the data. Comparisons are made with the approach proposed by N. Brouhns, M. Denuit and J.K. Vermunt [ibid. 31, No. 3, 373–393 (2002; Zbl 1074.62524); Bull. Swiss Assoc. Actuaries, 105–130 (2002)], as well as with the original model of R. D. Lee and L. Carter [J. Am. Stat. Assoc. 87, 659–671 (1992)].

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
65C40 Numerical analysis or methods applied to Markov chains
91B30 Risk theory, insurance (MSC2010)
91D20 Mathematical geography and demography

Citations:

Zbl 1074.62524
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Alho, J.M., Discussion of Lee (2000), N. am. actuarial J., 4, 91-93, (2000)
[2] Brillinger, D.R., The natural variability of vital rates and associated statistics, Biometrics, 42, 693-734, (1986) · Zbl 0611.62136
[3] Brooks, S.P.; Roberts, G.O., Assessing convergence of Markov chain Monte Carlo algorithms, Stat. comput., 8, 319-335, (1998)
[4] Brouhns, N.; Denuit, M.; Vermunt, J.K., A Poisson log-bilinear approach to the construction of projected lifetables, Insur.: math. econ., 31, 373-393, (2002) · Zbl 1074.62524
[5] Brouhns, N.; Denuit, M.; Vermunt, J.K., Measuring the longevity risk in mortality projections, Bull. swiss assoc. actuaries, 105-130, (2002) · Zbl 1187.62158
[6] Carlin, B.P.; Louis, T.A., Bayes and empirical Bayes methods for data analysis, (2000), Chapman & Hall/CRC · Zbl 1017.62005
[7] Cowles, M.K.; Carlin, B.P., Markov chain Monte Carlo convergence diagnostics: a comparative review, J. am. stat. assoc., 91, 883-904, (1996) · Zbl 0869.62066
[8] Chib, S., Markov chain Monte Carlo methods: computation and inference, (), 381-394
[9] Dellaportas, P.; Smith, A.F.M.; Stavropoulos, P., Bayesian analysis of mortality data, J. roy. stat. soc., ser. A, 164, 275-291, (2001) · Zbl 1002.91504
[10] Denuit, M.; Lang, S., Nonlife ratemaking with Bayesian GAM’s, Insur.: math. econ., 35, 627-647, (2004)
[11] Gilks, W.; Richardson, S.; Spiegelhalter, D., Markov chain Monte Carlo in practice, (1996), Chapman & Hall New York · Zbl 0832.00018
[12] Girosi, F., King, G., 2003. Demographic Forecasting. Monograph.
[13] Goodman, L.A., Simple models for the analysis of association in cross-classifications having ordered categories, J. am. stat. assoc., 74, 537-552, (1979)
[14] Klugman, S., Bayesian modelling of mortality catastrophes, Insur.: math. econ., 8, 159-164, (1989)
[15] Lee, R.D., The lee – carter method of forecasting mortality, with various extensions and applications, N. am. actuarial J., 4, 80-93, (2000) · Zbl 1083.62535
[16] Lee, R.D.; Carter, L., Modelling and forecasting the time series of US mortality, J. am. stat. assoc., 87, 659-671, (1992)
[17] Renshaw, A.E.; Haberman, S., Lee – carter mortality forecasting with age specific enhancement, Insur.: math. econ., 33, 255-272, (2003) · Zbl 1103.91371
[18] Renshaw, A.; Haberman, S., Lee – carter mortality forecasting: a parallel generalized linear modelling approach for england and wales mortality projections, Appl. stat., 52, 119-137, (2003) · Zbl 1111.62359
[19] Sithole, T.Z.; Haberman, S.; Verrall, R.J., An investigation into parametric models for mortality projections, with applications to immediate annuitants and life office pensioners’ data, Insur.: math. econ., 27, 285-312, (2000) · Zbl 1055.62555
[20] Smith, A.F.M.; Roberts, G.O., Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, J. roy. stat. soc., ser. B, 55, 3-23, (1993) · Zbl 0779.62030
[21] Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van der Linde, A., Bayesian measures of model complexity and fits (with discussion), J. roy. stat. soc. B, 64, 583-639, (2002) · Zbl 1067.62010
[22] Yashin, A.I.; Iachine, I.A.; Begun, A.S., Mortality modeling: a review, Math. popul. studies, 8, 305-332, (2000) · Zbl 0984.92027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.