zbMATH — the first resource for mathematics

The phase transition in the one-dimensional Ising model with \(1/r^2\) interaction energy. (English) Zbl 1110.82302
Summary: We prove the existence of a spontaneous magnetization at low temperature for the one-dimensional Ising Model with \(1/r^2\) interaction energy.

82B26 Phase transitions (general) in equilibrium statistical mechanics
82B28 Renormalization group methods in equilibrium statistical mechanics
Full Text: DOI
[1] Anderson, P. W., Yuval, G., Hamann, D. R.: Phys. Rev.B1, 4464 (1970); Anderson, P. W., Yuval, G.: J. Phys.C4, 607 (1971)
[2] Dyson, F. J.: Commun. Math. Phys.12, 212 (1969) · doi:10.1007/BF01661575
[3] Dyson, F. J.: in Statistical mechanics at the turn of the decade, E. G. D. Cohen, (ed.). New York: Marcel Dekker 1971
[4] Dyson, F. J.: Commun. Math. Phys.21, 269 (1971) · doi:10.1007/BF01645749
[5] Fröhlich, J., Spencer, T.: Phys. Rev. Lett.46, 1006 (1981); Commun. Math. Phys.81, 527-602 (1981) · doi:10.1103/PhysRevLett.46.1006
[6] Landau, L., Lifshitz, E.: Statistical physics. New York: Addison-Wesley 1969 · Zbl 0080.19702
[7] Rogers, J., Thompson, C.: Preprint
[8] Ruelle, D.: Commun. Math. Phys.9, 267 (1968) · Zbl 0165.29102 · doi:10.1007/BF01654281
[9] Simon, B., Sokal, A.: Rigorous energy-entropy arguments. J. Stat. Phys.25, 679 (1981) · doi:10.1007/BF01022362
[10] Thouless, D. J.: Phys. Rev.187, 732 (1969) · doi:10.1103/PhysRev.187.732
[11] Griffiths, R. B.: J. Math. Phys.8, 478 (1967);8, 484 (1967); Commun. Math. Phys.6, 121 (1967) · doi:10.1063/1.1705219
[12] Dobrushin, R.: Funct. Anal. Appl.2, 302 (1968) · Zbl 0192.61702 · doi:10.1007/BF01075682
[13] Simon, B.: Commun. Math. Phys.77, 111 (1980) · doi:10.1007/BF01982711
[14] Brydges, D., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys.83, 123-150 (1982) · doi:10.1007/BF01947075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.